
Introducing Surfaces

C.T.J. Dodson

These notes supplement the lectures and provide practise exercises. We begin with some
material you will have met before, perhaps in other forms, to set some terminology and
notation. Further details on unfamiliar topics may be found in, for example Cohn [3] for
algebra, Dodson and Poston [5] for linear algebra, topology and differential geometry,
Gray [6] for curves, surfaces and calculations using the computer algebra package Math-
ematica, and Wolfram [10] for Mathematica itself. Several on-line hypertext documents
are available to support this course [1].

Introduction
This document briefly summarizes definitions and hints at proofs of principal results for a first
course on surfaces, beginning with an informal introduction to Euclidean space. It is intended
as an aide memoire—a companion to lectures, tutorials and computer lab classes, with exercises
and proofs to be completed by the student. Exercises include the statements to be verified—
mathematics needs to be done, not just read!

The prereqisites are: elementary knowledge of Euclidean geometry and the definition of Rn, famil-
iarity with vector and scalar product, norms and basic linear algebra
(remember dim dom = dim ker + dim im?)
some basic topological concepts—compactness, covering space—and elementary group theory—free
groups and quotients, presentation by relations, commutator subgroup.

Where possible, we encourage use of computer algebra software to experiment with the mathe-
matics, to perform tedious analytic calculations and to plot graphs of functions that arise in the
studies. For this purpose, we shall make use of Gray’s book [6]—which contains all of the theory
we need for curves and surfaces—and we use the computational packages he provides free in the
form of Mathematica NoteBooks via [1]

For general information about the Mathematica software, see Wolfram’s book [10] and the web-
site Mathematica. For further study of more general differential geometry and its applications to
relativity and spacetime geometry, see Dodson and Poston [5]. For an introduction to algebraic
topology see Armstrong [2] and for more advanced topics and their applications in analysis, ge-
ometry and physics, see Dodson and Parker [4]. The abovementioned books contain substantial
bibliography lists for further reference.

The document you are reading was created with LATEX and a LATEX tutorial is available at [1].

Copyright Statement

Members of educational institutions are welcome to make these materials available to others or distribute

copies for educational use free of charge, but please acknowledge the source, include this front page and

please also send the author any feedback. For any other purpose except educational, such as commercial,

use of these materials is prohibited without prior written permission.

1 Sets and maps

A function or map from a set X to a set Y is a set of ordered pairs from X and Y (pairs like (x, y)
are the coordinates in the graph of the function) satisfying the uniqueness of image property:

for all x ∈ X, there exists a unique y ∈ Y that is related to the given x
Then we usually write y = f(x) or just y = fx, and f : X → Y : x 7→ f(x).

A map f : X → Y may have any or none of the following properties:
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injectivity (1 to 1) f(x) = f(y) implies x = y
surjectivity (onto) im f = Y ; denoted f : X →→ Y
bijectivity (both) injectivity and surjectivity

We shall use sometimes the following common abbreviations:

N,Z,Q,R,C Natural, integer, rational, real, complex numbers.
x ∈ V x is a member of set V .
x /∈ V x is not a member of set V .
∃x ∈ V There exists at least one member x in V .
∀x ∈ V For all members of V .
W ⊆ V W is a subset of set V : so (∀x ∈W ) x ∈ V .
{x ∈ V | p(x)} The set of members of V satisfying property p.
∅ The empty set.
f : V →W f is a map or function from V to W .
f : x 7→ f(x) f sends a typical element x to f(x).
dom f Domain of f : the set {x | ∃ f(x)}.
im f Image of f : the set {f(x) | x ∈ dom f}.
fU for U ⊆ dom f Image of U by f : the set {f(x) | x ∈ U}.
f←M for M ⊆ im f Inverse image of M by f : the set {x | f(x) ∈M}.
1X Identity map on x: the map given by 1X(x) = x for all x ∈ X.
U ∩ V Intersection of U and V : the set {x | x ∈ U and x ∈ V }.
U ∪ V Union of U and V : the set {x | x ∈ U or x ∈ V or both}.
V \ U Complement of U in V : the set {x ∈ V | x /∈ U}.
f ◦ g Composite of maps: apply g then f .∑n

i=1 xi Sum x1 + x2 + · · ·+ xn.∏n
i=1 xi Product x1x2 · · ·xn.
⇒ Implies, then.
⇔ Implies both ways, if and only if.
a× b Vector cross product of two vectors.
a · b Scalar product of two vectors.
||a|| Norm,

√
a · a, of a vector.

2 Euclidean Space En

We distinguish between Rn the real vector space of n-tuples of real numbers, and En the affine
point space of n-tuples of real numbers with difference map:

difference : En × En → Rn : (p, q) 7→ q − p

Thus, we view En as the set of points, together with the standard Euclidean (Pythagorean) distance
structure and angles, and Rn as providing the vectors of directed differences between points. Not
all books make this distinction so you need to be prepared to encounter the unstated identification
En = Rn. Find out more about Euclid at webpage [1].

The derivative of a map f : Em → En at p ∈ Em is the limit of differences that is the best
linear approximation to f, at p. Thus, we need vector spaces to define linearity for maps between
Euclidean spaces and suitable vector spaces are automatically present at each point of En. At each
point p in En we construct a vector space TpEn, called the tangent space to En at p, from the
directed difference vectors to lines in En that pass through p.

TpEn = {α′(0) ∈ En|α is a line in En starting at p ∈ En}

and α′ is the n-tuple of derivatives of the coordinates of α.

Technically, we collect all of the TpEn together in one large product space:

TEn ∼= En × Rn
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called the tangent bundle to En, which comes equipped with a natural projection map onto its
first component to keep track of the points to which tangent vectors are attached [5].

3 Euclidean Space E3

This is the space of our normal experience and we distinguish between R3, the vector space or
linear space of triples of real numbers, and Euclidean 3-space E3, the point space of triples of
real numbers. Intuitively, we can think of a vector in R3 as an arrow corresponding to the directed
line in E3 from one point (the blunt end of the vector arrow) to another point (the sharp end of
the vector arrow).

In this course we shall be concerned only with three dimensional E3 but the basic definitions of
points, difference vectors and distances are the same for all En with n = 1, 2, 3, . . . ; of course, in
dimensions higher than 3, the extra directions will arise from other features than ordinary space—
such as time, temperature, pressure etc. The important fact to hang onto is that E3 consists of
points represented by coordinates p = (p1, p2, p3) while the directed difference between a pair of
such points p, q is a vector q − p with components (q1−p1, q2−p2, q3−p3). In modern mathematics,
it is customary to omit the overbar when writing vectors and this will be our usual practice; we
identify vectors with their sets of components and points with their sets of coordinates.

The space E3 has one particularly important feature: the availability of the vector cross product
on R3, which simplifies many geometrical proofs.

Our main interest in this course is to develop the geometry of curves and surfaces in
E3. The basic ideas are very simple: a curve is a continuous image of an interval and
a surface is a continuous image of a product of intervals; in each case the intervals
may be open or closed or neither.

Difference vectors and distances The difference map gives the vector arrow from one point
to another and is defined by

difference : E3 × E3 → R3 : (p, q) 7→ v = q − p.

The distance map takes non-negative real values and is defined by

distance : E3 × E3 → [0,∞) : (p, q) 7→ ||q − p||

here, || || denotes the operation of taking the norm or absolute value of the vector, defined by

||(q1 − p1, q2 − p2, q3 − p3)|| = +
√

(q1 − p1)2 + (q2 − p2)2 + (q3 − p3)2

Then we can view E3 as the set of points representing ordinary space, together with the standard
Euclidean angles and Pythagorean distances and R3 provides the vectors of directed differences
between points. Not all books make this distinction so you need to be prepared to encounter the
unstated identification E3 = R3. Often, we use the coordinates (x, y, z) for points in E3 and denote
by E2 the set of points in E3 with z = 0 and then we abbreviate (x, y, 0) to (x, y).

The standard unit sphere Sn in a Euclidean n-space is the set of points unit distance from the
origin; we shall often use S1 in E2 and S2 in E3.

4 Group actions

In algebra, geometry and topology we often exploit the fact that important structures arise from
families of morphisms that are indexed by a group. For example, rotations in the plane about the
origin are indexed by the unimodular group of complex numbers; we say that this group acts on
the plane and the orbit of a point at distance r from the origin is the circle of radius r.

We use in geometry the groups that act on subsets of En while preserving Euclidean distances and
angles; these are groups of isometries of En. They form subgroups of matrix groups. The set
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of n×n nonsingular real matrices forms a group GL(n,R), often just written GL(n), the general
linear group, under matrix multiplication. So does O(n), the subset consisting of orthogonal
matrices, and its subset SO(n) consisting of those with determinant +1.

The Euclidean group E(n) consists of all isometries of Euclidean n-space En. Isometries can
always be written as an ordered pair from O(n)× Rn with action on En given by

(O(n)× Rn)× En −→ En : ((α, u), x) 7−→ α(x) + u

and composition
(α, u)(β, v) = (αβ, α(v) + u) .

Thus, topologically E(n) is the product O(n) × Rn but algebraically it is not the product group.
It is called a semidirect product of O(n) and Rn.

Definitions
A group G is said to act on a set (for example, a group, vector space, manifold, topological space)
X on the left if there is a map (for example, homomorphism, linear, smooth, continuous)

α : G×X −→ X : (g, x) 7−→ αg(x)

such that αg∗h(x) = αg(αh(x)) and αe(x) = x for all x ∈ X. Normally, we shall want each
αg : X → X to be an isomorphism in the category for X; in this case, an action is the same as
a representation of G in the automorphism group of X, or a representation on X. We sometimes
abbreviate the notation to g · x, especially when α is fixed for the duration of a discussion. There
is a dual theory of actions on the right; we have to keep the concepts separate because every group
acts on itself by its group operation, but it may be different on the right from on the left.

The orbit of x ∈ X under the action α of G is the set

G · x = {αg(x) | g ∈ G} .

It is easy to show that the orbits partition X, so they define an equivalence relation on X:

x ∼ y ⇐⇒ ∃ g ∈ G with αg(x) = y .

The quotient object (set, space, etc.) is called the orbit space and denoted by X/G.

The stabilizer or isotropy subgroup of x is defined to be the set

stabG(x) = {g ∈ G | αg(x) = x},

and it is always a subgroup of G.

The action is called transitive if for all x, y ∈ X we can find g ∈ G such that

αg(x) = y (so also αg−1(y) = x) ,

free if the only αg with a fixed point has g = e (the identity of G),
and effective if

αg(x) = x (∀x ∈ X) =⇒ g = e.

Note that an action being transitive is equivalent to it having exactly one orbit, or to its orbit
space being a singleton.

The situations of most practical interest are when:

• X is a subset of Euclidean space, a group or vector space—especially Sn, En or Rn;

• G,X are topological groups, so each has a topology with respect to which its binary
operation and the taking of inverses is continuous;

• G is a topological group and X is a topological space;
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• G is a Lie group, so G has a differentiable structure with respect to which its binary
operation and the taking of inverses is smooth, and X is a smooth manifold. Here smooth
means all derivatives of all orders exist and are continuous. Important examples of Lie
groups are Rn, GL(n) and S1, where the differentiability arises from that of the underlying
real functions.

Exercises on group actions

1. (Z,+) is a subgroup of (R,+).

2. The symmetric group Sn of permutations of n objects is not abelian for n > 2.

3. Find a group G consisting of four, 2× 2 real matrices such that G acts on the plane E2. For
the case n = 2 find discrete subgroups G < E(2) such that Rn/G is: (i) the cylinder; (ii) the
torus.

4. The general linear group GL(n;R) is not abelian if n > 1.

5. Prove that GL(2) has a subgroup consisting of rotations in a plane{(
cos θ − sin θ
sin θ cos θ

)
| θ ∈ R

}
.

This is actually SO(2), the special orthogonal group of 2× 2 real matrices.

6. Find an isomorphism
f : SO(2)→ {z ∈ C| |z| = 1}

and give its inverse.

7. Prove that, for all elements a in group G, the map

ca : G→ G : x 7→ a−1xa

is an automorphism; find the inverse of ca.

8. The group SO(2) of rotations in a plane acts on a sphere S2 as rotations of angles of longitude.
The orbits are circles of latitude and the quotient space by this action is the interval [−1, 1].
The action is neither transitive nor free, but it is effective.

9. Prove that SO(2) defines a left action on E2 by

ρ : SO(2)× E2 → E2 : (A, p) 7→ LAp

where LAp denotes matrix multiplication of the coordinate column vector p by the matrix
A. To establish this you need to show that the map ρ is well-defined and that it satisfies two
rules for all p ∈ E2 and all A,B ∈ SO(2), namely

Product LA(LBp) = LABp

Identity LIp = p

[In fact, the whole of the general linear group GL(2) acts on E2.]

10. Prove that the action ρ is effective but neither free nor transitive. Find the orbits under this
action of the points on the x-axis of E2.

11. Prove that the action ρ preserves the scalar product; that is, for all p, q ∈ E2 and all A ∈
SO(2),

LAp · LAq = p · q

Hence deduce that the action preserves Euclidean angles, lengths and areas.
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12. Show that

LJ =

(
0 −1
1 0

)
∈ SO(2)

and find the image under LJ of the unit square in the upper right quadrant of E2. [Hint:
Check the edge vectors.] Find an element K ∈ GL(2) with K 6∈ SO(2) and detK = −1.
This defines a linear map LK ; compare its effect on the unit square with the image found for
LJ .

13. It is clear that GL(3), which acts on E3, has a subgroup SO(3), consisting of 3 × 3 real
matrices having determinant +1. Find three distinct subgroups of SO(3), consisting of rota-
tions around the three coordinate axes, respectively, by finding three group homomorphisms
SO(2)→ SO(3) with trivial kernels.

14. Use the subgroups of SO(3) found in the previous exercise, and the parametric equation for
the equator of S2, to show how any other great circle on S2 can be found by appropriate
combinations of rotations of the equator.

15. Find two matrices, R1 and R2 from SO(3) which represent, respectively, rotation by π/3
about the y-axis and rotation by π/4 about the z-axis; each rotation must be in a right-
hand-screw sense in the positive direction of its axis. Find the product matrix R1R2 and
show that its transpose is its inverse.

5 Regular Surfaces

A strip, with its faces of different colours, twisted into a Möbius band. As you probably know,
this yields a non-orientable surface with one face and one edge. Recall that in our study of curves
we concentrated on regular curves—which had nowhere zero derivatives (ie rank 1 Jacobian) for
component functions. This meant that, locally, the curve was homeomorphic to open subintervals
of its domain but globally the curve may have had self-intersections. We seek the corresponding
generalization to define regular surfaces such that locally they are homeomorphic to open sets
(called coordinate patches or just patches) in E2. To achieve this, we need the maps defining
our surface to be injective and with rank 2 Jacobians on the patches; so our patches are not allowed
to generate self-intersections in their images.

Find out more about Jacobi at webpage [1]

Exercises on coordinates

1. Verify that a parametric equation for the unit 2-sphere S2 in E3 is given by

g : [0, 2π]× [−π/2, π/2] :→ E3 : (u, v) 7→ (cos v cosu, cos v sinu, sin v).

Find a parametric equation for the equator of this sphere, and for a perpendicular circle of
longitude.

2. Find a parametric equation for a sphere of radius a.

3. Find a parametric equation for an ellipsoid with lengths of its principal semi-axes having
values a, b, c.

4. Denote by
x : U → En : (u, v) 7→ (x1, x2, . . . , xn) (1)

the coordinate patch map for some surface M in En. Then the partial derivatives of x are
given by

xu : U → En : (u, v) 7→ (∂ux1, ∂ux2, . . . , ∂uxn) (2)

xv : U → En : (u, v) 7→ (∂vx1, ∂vx2, . . . , ∂vxn) (3)
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5. At any point p ∈ U, the Jacobian of x has rank 2 if and only if at that point we have xu, xv
linearly independent or equivalently∣∣∣∣ xu · xu xu · xv

xv · xu xv · xv

∣∣∣∣ 6= 0. (4)

6. The arc length function s of a curve α lying in the image of patch map x in (1) satisfies

ds

dt
=

√
E
du

dt

2

+ 2F
du

dt

dv

dt
+G

dv

dt

2

(5)

with E = xu · xu, F = xu · xv, G = xv · xv (6)

equivalently ds2 = EdU2 + 2Fdudv +Gdv2 (7)

The functions E,F,G are called the coefficients of the first fundamental form or of the
Riemannian metric induced on M ⊂ Rn. Find out more about Riemann [1].

7. Find the functions E,F,G for local patches on a plane, a cylinder, a sphere and a saddle; sat-
isfy yourself that they generalize the Euclidean distance function and Pythagoras’s theorem.
Find out more about Pythagoras [1].

Obviously, when we need more than one patch to define the surface (as for a sphere—why?, try
wrapping a ball with paper!) then we want the change of patch maps to be diffeomorphisms on
their overlaps. This allows us to define differentiability on a surface in terms of differentiability
of components on local patches. The image of a patch together with the induced map from the
surface is called a chart; the collection of charts used to define the surface is called an atlas
and any given surface may have many different choices of atlases. Many of our constructions
generalize further from dimension 2 to arbitrary dimension n—giving n-manifolds [5]. As is often
the case in mathematics, the big step is from one to more than one—from two to many is usually
straightforward, until the many becomes infinite.

Exercises on atlases

1. The unit 2-sphere S2 has an atlas consisting of two charts

{(UN , φN ), (US , φS)}

where UN consists of S2 with the north pole (n.p.) removed, US consists of S2 with the south
pole (s.p.) removed, and the chart maps are stereographic projections. Thus, if S2 is the
unit sphere in R3 centered at the origin then:

φN : S2 \ {n.p.} −→ E2 : (x, y, z) 7−→ 1

1 + z
(x, y)

φS : S2 \ {s.p.} −→ E2 : (x, y, z) 7−→ 1

1− z
(x, y).

What are the patches corresponding to these charts?

2. The same type of atlas works also for Sn, which is an example of an n-dimensional general-
ization of surfaces.

3. Rn has an atlas consisting of just one chart, the identity map.

4. Find another atlas for S2 consisting of projections of six hemispheres onto three perpendicular
planes through the origin.

5. Find atlases for the cylinder S1 × (0, 1), and for the torus S1 × S1.
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6. Gray [6] gives a parametrization of, among many other surfaces, a Möbius strip:

Möbius : (0, 2π)× (−0.3, 0.3)→ E3

: (u, v) 7→ {cosu+ v cos(
u

2
) cosu, sinu+ v cos(

u

2
) sinu, v sin(

u

2
)}

Find an atlas for this surface.

7. The Klein bottle is an example of a non-orientable closed surface. It has several embeddings
in 3-space but all involve self-intersections and in fact it requires 4 dimensions to allow an
injective embedding. Here is one embedding in which the self-intersection is in the form of a
figure-eight knot:

Klein : [0, 2π]× [0, 2π]→ E3

: (u, v) 7→ {(2 + cos
u

2
sin t− sin

u

2
sin 2t) cosu,

(2 + cos
u

2
sin t− sin

u

2
sin 2t) sinu,

sin
u

2
sin t+ cos

u

2
sin 2t}

6 Tangent Spaces

The derivative of a map f : Em → En at p ∈ Em is the limit of differences that is the best linear
approximation to f, at p. Thus, we need vector spaces to define linearity for maps between surfaces
and these are automatically present at each point of En. At each point p of a surface M in En we
construct a vector space TpM , called the tangent space to M at p, from the tangent vectors to
curves in M that pass through p.

TpM = {α′(0) ∈ En|α is a curve in M starting at p ∈M}

A continuous choice of tangent vector on M is called a tangent vector field on M .

Exercises on tangent spaces

1. Construct TpE2.

2. Construct a vector space structure on TpM.

3. Differentiable maps between surfaces are called surface maps and induce tangent space
maps; a surface map is a local isometry if it preserves norms.

4. Construct a tangent vector field on S2, and show that it must be zero somewhere [2, 4].

5. There is only one reasonable way to define the derivative ∇yV of a vector field V on M in
the tangent direction y ∈ TpM :

∇yV = lim
t→0

V ◦ α(t)− V ◦ α(0)

t
(8)

where α is a curve in M beginning at p with α′(0) = y.

6. Check that ∇ in (8) is linear in y and V, and find coordinate expressions for ∇yV in terms
of those for y and V.
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7 Normal Vectors and Gauss Map

Where xu, xv from (4) are linearly independent they define a normal vector field xu × xv.
For surfaces in E3, the Gauss map of the patch map

x : U → E3

is defined at regular points by

G : U → S2 : (u, v) 7→ xu × xv
‖xu × xv‖

(9)

If it is possible to make a continuous assignation of a unit normal vector over the whole of a regular
surface in E3, (eg when xu × xv is nowhere zero) then we say that the surface is orientable. On
orientable surfaces the Gauss map on a patch extends to a continuous map on the whole surface.

Find out more about Gauss at webpage [1]

Exercises on orientability

1. For n̂ a unit normal vector field, differentiate n̂ · xu = n̂ · xv = 0 with respect to u and with
respect to v. We call the real functions

e = −n̂u · xu, f = −n̂v · xu and g = −n̂v · xv (10)

the coefficients of the second fundamental form of x.

2. If a surface is orientable, then there are exactly two choices of the continuous unit normal
vector field.

3. S2 is orientable but a Möbius strip is not.

8 Shape Operator and Curvature

Let n̂ be a unit normal vector field defined in a neighbourhood of p ∈M. Then the shape operator
measures the vectorial rate of change of the unit normal vector field n̂ as the linear map [8]

S : TpM → TpM : y 7→ −∇yn̂ (11)

The normal curvature of M at p in the direction y ∈ TpM is

k : TpM → R : y 7→ S(y) · y
‖y‖2

(12)

The normal curvature k induces a real-valued map on S2, which is compact, so k achieves its
bounds; the extreme values are called principal curvatures k1, k2, and determine the principal
directions in the surface. The shape operator S is a symmetric operator and so diagonalizable,
with real eigenvalues which turn out to be the principal curvatures.

Recall from linear algebra that a linear map A : R3 → R3 has a 3 × 3 matrix representation and
|det(A)| is the volume (up to sign) of the image under A of a unit cube. The trace of A is the
sum of the diagonal elements of A, which is actually also the sum of the eigenvalues (including
multiplicities). These functions applied to the shape operator give measures of the curvature of
surfaces.

The Gaussian curvature K and the mean curvature H of a surface M ⊂ E3 are defined by

K : M → R : p 7→ det(S)|p (13)

H : M → R : p 7→ 1

2
trace(S)|p (14)
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M is flat if and only if K is the zero function and is a minimal surface if H is the zero function.
See Osserman [9] for an easily readable account of minimal surfaces.

Gauss’s Theorium Egregium (Remarkable Theorem) says that a local isometry preserves Gaus-
sian curvature. It is remarkable because it demonstrates that Gaussian curvature is an intrinsic
quality and not dependent on the particular embedding in E3. The problem of making flat maps
of the world (or of wrapping a football) is due to the fact that a plane surface has zero curvature
but the Earth has nonzero Gaussian curvature. Hence there is no local isometry between a flat
map and the surface of the Earth—even if it was a perfect sphere.

Exercises on Gaussian and mean curvature

1. Investigate K and H for the surfaces: plane, cylinder, hemisphere and saddle.

2. Expressions for the Gaussian and mean curvatures in terms of the components of the first
(Eq (7) and second (Eq (10) fundamental forms are

K = k1k2 =
eg − f2

EG− F 2
and (15)

H =
1

2
(k1 + k2) =

eG− 2fF + gE

2(EG− F 2)
(16)

3. A helicoid is locally isometric to a catenoid.
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