
Introducing Curves

C.T.J. Dodson

These notes supplement the lectures and provide practise exercises. We begin with some
material you will have met before, perhaps in other forms, to set some terminology and
notation. Further details on unfamiliar topics may be found in, for example Cohn [3] for
algebra, Dodson and Poston [5] for linear algebra, topology and differential geometry,
Gray [6] for curves, surfaces and calculations using the computer algebra package Math-
ematica, and Wolfram [10] for Mathematica itself. Several on-line hypertext documents
are available to support this course [1].

Introduction
This document briefly summarizes definitions and hints at proofs of principal results for a first
course on curves. It is intended as an aide memoire—a companion to lectures, tutorials and
computer lab classes, with exercises and proofs to be completed by the student. Exercises include
the statements to be verified—mathematics needs to be done, not just read!

The prereqisites here are: elementary knowledge of Euclidean geometry and the definition of Rn,
familiarity with vector and scalar product, norms and basic linear algebra, fundamental theorem
of calculus, inverse function theorem, implicit function theorem and a little vector calculus.

Where possible, we encourage use of computer algebra software to experiment with the mathe-
matics, to perform tedious analytic calculations and to plot graphs of functions that arise in the
studies. For this purpose, we shall make use of Gray’s book [6]—which contains all of the theory
we need for curves and surfaces—and we use the computational packages he provides free in the
form of Mathematica NoteBooks [1].

For further study of more general differential geometry and its applications to relativity and space-
time geometry, see Dodson and Poston [5]. For an introduction to algebraic topology see Arm-
strong [2] and for more advanced topics and their applications in analysis, geometry and physics,
see Dodson and Parker [4]. The abovementioned books contain substantial bibliography lists for
further reference.

The document you are reading was created with LATEX and a LATEX tutorial is available at [1].

Copyright Statement

Members of educational institutions are welcome to make these materials available to others or distribute

copies for educational use free of charge, but please acknowledge the source, include this front page and

please also send the author any feedback. For any other purpose except educational, such as commercial,

use of these materials is prohibited without prior written permission.

1 Sets and maps

A function or map from a set X to a set Y is a set of ordered pairs from X and Y (pairs like (x, y)
are the coordinates in the graph of the function) satisfying the uniqueness of image property:

for all x ∈ X, there exists a unique y ∈ Y that is related to the given x
Then we usually write y = f(x) or just y = fx, and f : X → Y : x 7→ f(x).

A map f : X → Y may have any or none of the following properties:

injectivity (1 to 1) f(x) = f(y) implies x = y
surjectivity (onto) im f = Y ; denoted f : X →→ Y
bijectivity (both) injectivity and surjectivity
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We shall use sometimes the following common abbreviations:

N,Z,Q,R,C Natural, integer, rational, real, complex numbers.
x ∈ V x is a member of set V .
x /∈ V x is not a member of set V .
∃x ∈ V There exists at least one member x in V .
∀x ∈ V For all members of V .
W ⊆ V W is a subset of set V : so (∀x ∈W ) x ∈ V .
{x ∈ V | p(x)} The set of members of V satisfying property p.
∅ The empty set.
f : V →W f is a map or function from V to W .
f : x 7→ f(x) f sends a typical element x to f(x).
dom f Domain of f : the set {x | ∃ f(x)}.
im f Image of f : the set {f(x) | x ∈ dom f}.
fU for U ⊆ dom f Image of U by f : the set {f(x) | x ∈ U}.
f←M for M ⊆ im f Inverse image of M by f : the set {x | f(x) ∈M}.
1X Identity map on x: the map given by 1X(x) = x for all x ∈ X.
U ∩ V Intersection of U and V : the set {x | x ∈ U and x ∈ V }.
U ∪ V Union of U and V : the set {x | x ∈ U or x ∈ V or both}.
V \ U Complement of U in V : the set {x ∈ V | x /∈ U}.
f ◦ g Composite of maps: apply g then f .∑n
i=1 xi Sum x1 + x2 + · · ·+ xn.∏n
i=1 xi Product x1x2 · · ·xn.
⇒ Implies, then.
⇔ Implies both ways, if and only if.
a× b Vector cross product of two vectors.
a · b Scalar product of two vectors.
||a|| Norm,

√
a · a, of a vector.

2 Euclidean Space En

We distinguish between Rn the real vector space of n-tuples of real numbers, and En the affine
point space of n-tuples of real numbers with difference map:

difference : En × En → Rn : (p, q) 7→ −→pq = (q1 − p1, q2 − p2, . . . , qn − pn)

Thus, we view En as the set of points, together with the standard Euclidean (Pythagorean) distance
structure and angles, and Rn as providing the vectors of directed differences between points. Not
all books make this distinction so you need to be prepared to encounter the unstated identification
En = Rn.
The derivative of a map f : Em → En at p ∈ Em is the limit of differences that is the best
linear approximation to f, at p. Thus, we need vector spaces to define linearity for maps between
Euclidean spaces and suitable vector spaces are automatically present at each point of En. At each
point p in En we construct a vector space TpEn, called the tangent space to En at p, from the
directed difference vectors to lines in En that pass through p.

TpEn = {α′(0) ∈ En|α is a line in En starting at p ∈ En} = {−→pq|q ∈ En}

where α′ is the n-tuple of derivatives of the coordinates of α.

Technically, we collect all of the TpEn together in one large product space:

TEn ∼= En × Rn

called the tangent bundle to En, which comes equipped with a natural projection map onto its
first component to keep track of the points to which tangent vectors are attached [5].
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Curves A (parametrized) curve in En is a continuous map

α : (a, b)→ En : t 7→ (α1(t), α2, . . . , αn(t)) (1)

Note that α is a map and its image, path or trace, α((a, b)), is a subset of En; we keep these
concepts distinct. For our purposes, we shall suppose that our curves are differentiable, in the
sense that the component real functions possess derivatives of all orders. The velocity of α is the
map

α′ : (a, b)→ TEn : t 7→ (α′1(t), α′2(t), . . . , α′n(t)) (2)

and its acceleration is α′′ = (α′)′. We are particularly interested in regular curves which are
differentiable and have nowhere zero velocity; then we usually choose the parameter set to make
α′ a unit vector for all t. The length of the curve (1) is the definite integral

Length[α] =

∫
(a,b)

‖α′(t)‖ (3)

and it is independent of reparametrization.

Exercises on parametrization of curves
Some obvious things should be checked and proofs supplied.

1. Investigate reparametrizations of the curve (1) in the form of diffeomorphisms of intervals

f : (c, d)→ (a, b) (4)

for which α ◦ f = β defines the same image as α. In particular, there are only two kinds of
these; what happens to the velocity components under reparametrizations?

2. There exists a unit speed reparametrization of every regular curve.

3. Unit speed curves are parametrized by arc length.

3 Euclidean Space E3

This is the space of our normal experience and we distinguish between R3, the vector space or
linear space of triples of real numbers, and Euclidean 3-space E3, the point space of triples of
real numbers. Intuitively, we can think of a vector in R3 as an arrow corresponding to the directed
line in E3 from one point (the blunt end of the vector arrow) to another point (the sharp end of
the vector arrow).

In this course we shall be concerned only with three dimensional E3 but the basic definitions of
points, difference vectors and distances are the same for all En with n = 1, 2, 3, . . . ; of course, in
dimensions higher than 3, the extra directions will arise from other features than ordinary space—
such as time, temperature, pressure etc. The important fact to hang onto is that E3 consists of
points represented by coordinates p = (p1, p2, p3) while the directed difference between a pair of
such points p, q is a vector −→pq with components (q1− p1, q2− p2, q3− p3). In modern mathematics,
it is customary to omit the overbar when writing vectors and this will be our usual practice; we
identify vectors with their sets of components and points with their sets of coordinates.

The space E3 has one particularly important feature: the availability of the vector cross product
on R3, which simplifies many geometrical proofs. Given two vectors in R3, their cross product is
perpendicular to both and if the original vectors were unit vectors then so is their cross product.
We shall use this device to construct normal vectors to curves and to surfaces; in the case of a
circle and a sphere, the radial coordinate vector is also a unit normal vector.

Our main interest in this course is to develop the geometry of curves and
surfaces in E3. The basic ideas are very simple: a curve is a continuous image
of an interval and a surface is a continuous image of a product of intervals; in
each case the intervals may be open or closed or neither. The rate of change of
direction of unit normal vectors with respect to arc length gives curvature information.
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Difference vectors and distances

The difference map gives the vector arrow from one point to another and is defined by

difference : E3 × E3 → R3 : (p, q) 7→ v = −→pq = (q1 − p1, q2 − p2, q3 − p3).

The distance map takes non-negative real values and is defined by

distance : E3 × E3 → [0,∞) : (p, q) 7→ ||−→pq||

here, || || denotes the operation of taking the norm or absolute value of the vector, defined by

||(q1 − p1, q2 − p2, q3 − p3)|| = +
√

(q1 − p1)2 + (q2 − p2)2 + (q3 − p3)2

Then we can view E3 as the set of points representing ordinary space, together with the standard
Euclidean angles and Pythagorean distances and R3 provides the vectors of directed differences
between points. Not all books make this distinction so you need to be prepared to encounter the
unstated identification E3 = R3. Often, we use the coordinates (x, y, z) for points in E3 and denote
by E2 the set of points in E3 with z = 0 and then we abbreviate (x, y, 0) to (x, y).

The standard unit sphere Sn in a Euclidean n-space is the set of points unit distance from the
origin; we shall often use S1 in E2 and S2 in E3. A parametric equation for the unit 2-sphere S2 in
E3 is given by

g : [0, 2π]× [−π/2, π/2] :→ E3 : (u, v) 7→ (cos v cosu, cos v sinu, sin v).

4 Group actions

In algebra, geometry and topology we often exploit the fact that important structures arise from
families of morphisms that are indexed by a group. For example, rotations in the plane about the
origin are indexed by the unimodular group of complex numbers; we say that this group acts on
the plane and the orbit of a point at distance r from the origin is the circle of radius r.

We use in geometry the groups that act on subsets of En while preserving Euclidean distances and
angles; these are groups of isometries of En. They form subgroups of matrix groups. The set
of n×n nonsingular real matrices forms a group GL(n,R), often just written GL(n), the general
linear group, under matrix multiplication. So does O(n), the subset consisting of orthogonal
matrices, and its subset SO(n) consisting of those with determinant +1.

The Euclidean group E(n) consists of all isometries of Euclidean n-space En. Isometries can
always be written as an ordered pair from O(n)× Rn with action on En given by

(O(n)× Rn)× En −→ En : ((α, u), x) 7−→ α(x) + u

and composition
(α, u)(β, v) = (αβ, α(v) + u) .

Thus, topologically E(n) is the product O(n) × Rn but algebraically it is not the product group.
It is called a semidirect product of O(n) and Rn.

Definitions
A group G is said to act on a set (for example, a group, vector space, manifold, topological space)
X on the left if there is a map (for example, homomorphism, linear, smooth, continuous)

α : G×X −→ X : (g, x) 7−→ αg(x)

such that αg∗h(x) = αg(αh(x)) and αe(x) = x for all x ∈ X. Normally, we shall want each
αg : X → X to be an isomorphism in the category for X; in this case, an action is the same as
a representation of G in the automorphism group of X, or a representation on X. We sometimes
abbreviate the notation to g · x, especially when α is fixed for the duration of a discussion. There
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is a dual theory of actions on the right; we have to keep the concepts separate because every group
acts on itself by its group operation, but it may be different on the right from on the left.

The orbit of x ∈ X under the action α of G is the set

G · x = {αg(x) | g ∈ G} .

It is easy to show that the orbits partition X, so they define an equivalence relation on X:

x ∼ y ⇐⇒ ∃ g ∈ G with αg(x) = y .

The quotient object (set, space, etc.) is called the orbit space and denoted by X/G.

The stabilizer or isotropy subgroup of x is defined to be the set

stabG(x) = {g ∈ G | αg(x) = x},

and it is always a subgroup of G.

The action is called transitive if for all x, y ∈ X we can find g ∈ G such that

αg(x) = y (so also αg−1(y) = x) ,

free if the only αg with a fixed point has g = e (the identity of G),
and effective if

αg(x) = x (∀x ∈ X) =⇒ g = e.

Note that an action being transitive is equivalent to it having exactly one orbit, or to its orbit
space being a singleton.

The situations of most practical interest are when:

• X is a subset of Euclidean space, a group or vector space—especially Sn, En or Rn;

• G,X are topological groups, so each has a topology with respect to which its binary
operation and the taking of inverses is continuous;

• G is a topological group and X is a topological space;

• G is a Lie group, so G has a differentiable structure with respect to which its binary
operation and the taking of inverses is smooth, and X is a smooth manifold. Here smooth
means all derivatives of all orders exist and are continuous. Important examples of Lie
groups are Rn, GL(n) and S1, where the differentiability arises from that of the underlying
real functions.

Exercises on group actions

1. (Z,+) is a subgroup of (R,+).

2. The symmetric group Sn of permutations of n objects is not abelian for n > 2.

3. Find a group G consisting of four, 2× 2 real matrices such that G acts on the plane E2. For
the case n = 2 find discrete subgroups G < E(2) such that Rn/G is: (i) the cylinder; (ii) the
torus.

4. The general linear group GL(n;R) is not abelian if n > 1.

5. Prove that GL(2) has a subgroup consisting of rotations in a plane{(
cos θ − sin θ
sin θ cos θ

)
| θ ∈ R

}
.

This is actually SO(2), the special orthogonal group of 2× 2 real matrices.
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6. Find an isomorphism
f : SO(2)→ {z ∈ C| |z| = 1}

and give its inverse.

7. Prove that, for all elements a in group G, the map

ca : G→ G : x 7→ a−1xa

is an automorphism; find the inverse of ca.

8. The group SO(2) of rotations in a plane acts on a sphere S2 as rotations of angles of longitude.
The orbits are circles of latitude and the quotient space by this action is the interval [−1, 1].
The action is neither transitive nor free, but it is effective.

9. Prove that SO(2) defines a left action on E2 by

ρ : SO(2)× E2 → E2 : (A, p) 7→ LAp

where LAp denotes matrix multiplication of the coordinate column vector p by the matrix
A. To establish this you need to show that the map ρ is well-defined and that it satisfies two
rules for all p ∈ E2 and all A,B ∈ SO(2), namely

Product LA(LBp) = LABp

Identity LIp = p

[In fact, the whole of the general linear group GL(2) acts on E2.]

10. Prove that the action ρ is effective but neither free nor transitive. Find the orbits under this
action of the points on the x-axis of E2.

11. Prove that the action ρ preserves the scalar product; that is, for all p, q ∈ E2 and all A ∈
SO(2),

LAp · LAq = p · q

Hence deduce that the action preserves Euclidean angles, lengths and areas.

12. Show that

LJ =

(
0 −1
1 0

)
∈ SO(2)

and find the image under LJ of the unit square in the upper right quadrant of E2. [Hint:
Check the edge vectors.] Find an element K ∈ GL(2) with K 6∈ SO(2) and detK = −1.
This defines a linear map LK ; compare its effect on the unit square with the image found for
LJ .

13. It is clear that GL(3), which acts on E3, has a subgroup SO(3), consisting of 3 × 3 real
matrices having determinant +1. Find three distinct subgroups of SO(3), consisting of rota-
tions around the three coordinate axes, respectively, by finding three group homomorphisms
SO(2)→ SO(3) with trivial kernels.

14. Use the subgroups of SO(3) found in the previous exercise, and the parametric equation for
the equator of S2, to show how any other great circle on S2 can be found by appropriate
combinations of rotations of the equator.

15. Find two matrices, R1 and R2 from SO(3) which represent, respectively, rotation by π/3
about the y-axis and rotation by π/4 about the z-axis; each rotation must be in a right-
hand-screw sense in the positive direction of its axis. Find the product matrix R1R2 and
show that its transpose is its inverse.
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5 Curves in E3

Given a point p ∈ E3 and a vector v ∈ R3, there is always a unique point q ∈ E3 such that −→pq = v;
intuitively, q is at the point of the arrow v when its tail is at p. Then we can write q = p+ v and
the line segment from p (in the direction v) to q is given in parametric form by

L : [0, 1]→ E3 : t 7→ p+ tv

or equivalently
L : [0, 1]→ E3 : t 7→ (p1, p2, p3) + t(v1, v2, v3)

and we say that the tangent vector, or velocity vector of this line at t ∈ [0, 1] is v. Thus, we
can write this as the derivative, which is the limit of differences:

DtL = lim
h→0

L(t+ h)− L(t)

h
=
dL

dt
= v

because L is a linear function of t, since p and v are constant.

As we shall see, a curve may have a nonlinear dependence on its parameter and a velocity vector
that varies in magnitude and direction, so curves are natural generalisations of line segments.

Tangent vector, speed and acceleration vector
A curve in E3 with parameter t satisfying a ≤ t ≤ b is a continuous map

α : [a, b]→ E3 : t 7→ (α1(t), α2(t), α3(t)) (5)

Note that α is a map and its image, (also called track or path), α([a, b]), is a subset of E3; we keep
these concepts distinct. The curve starts at the point α(a) and ends at the point α(b). Sometimes,
one or both endpoints of the curve are absent; so in general the domain of a curve may be an
interval of any kind.

For our purposes, we shall suppose that our curves are differentiable, in the sense that the
components, α1, α2, α3, are real functions of t possessing derivatives of all orders—so no corners
like those in the graph of |x|. The tangent vector or velocity of α is the vector valued map
Dtα = α′ which in components is given by

α′ : [a, b]→ R3 : t 7→ (α′1(t), α′2(t), α′3(t)) (6)

and its speed is the absolute value of the velocity vector. The acceleration of α is the vector
α′′ = (α′)′, given by the derivative of the velocity. Observe that the velocity and acceleration
vectors are attached to the curve and change as the parameter moves the point of attachment.

We are particularly interested in regular curves which are differentiable and have nowhere zero
velocity (they are always going somewhere, not stopped); then we make calculations easier if we
choose the parameter set 0 < s < L to make α′ a unit vector for all s, and L is actually the total
length of the curve.

The length of the curve (1) is defined as the integral of the speed over the domain [a, b]

Length[α] =

∫
[a,b]

‖α′(t)‖ =

∫ b

a

√
α′1(t)2 + α′2(t)2 + α′3(t)2 dt (7)

and it is independent of reparametrization. Unit speed curves are parametrized by arc length
because then ‖α′(t)‖ = 1 for all t. In general, it is difficult to calculate analytically the arc length
of a given curve—because of the presence of the square root of sums of functions in the integrand;
the same is true for other calculations for curves and surfaces but computer algebra software can
help1.

1On this course we use the computer algebra package Mathematica [10] to perform calculus and create graphics
for curves and surfaces; Gray [6] provides the necessary Mathematica input to plot and study virtually all named
curves and surfaces and perform analytic calculations on them—including the solution of geodesic equations on
the surfaces and construction of curves with prescribed curvature and torsion. The necessary files can be found
via the web server [1] An important source of curves is from solutions of ordinary differential equations. Gray et
al. [7] provided a definitive text on this subject, together with associated Mathematica functions to solve ordinary
differential equations analytically and numerically, and plot families of solutions.
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6 Plane Curves

A plane curve is a curve that lies in some plane in E3. If the curve lies in the z = 0 plane, then
we may write the curve with just two components in the form

α : [a, b]→ E2 : t 7→ (α1(t), α2(t)) (8)

In general, of course, whether a curve lies in a plane is not obvious from its equation; we shall
construct in the section on space curves a function called torsion that measures departure from
planarity for general curves in E3.

On regular plane curves, we can measure the curvature as the rate of change of the direction of a
unit tangent vector with arc length. We call this the signed curvature κ2, of α, defined by

κ2[α](t) =
α′′(t) · Jα′(t)
‖α′(t)‖3

, (9)

in which J is the linear operator

J : R2 → R2 : (p, q) 7→ (−q, p), so always Jα′ · α′ = 0. (10)

At points where the curvature κ2 is nonzero, 1/κ2[α] is called the radius of curvature of α.

The rate at which the angular direction Θ of a regular plane curve changes can be calculated by
differentiating its normalized velocity vector and we find that this coincides with the curvature for
unit speed curves. Denote the speed by v(t) = ||α′(t)|| > 0, then we deduce:

α′(t)

v(t)
= (cos(Θ(t), sin(Θ(t)) (11)

v(t)α′′(t) + v′(t)α′(t)

v(t)2
= Θ′(t)(− sin(Θ(t), cos(Θ(t)) (12)

Jα′(t) = v(t)(− sin(Θ(t), cos(Θ(t)) (13)

κ2(t) =
Θ′(t)

v(t)
, using (10) and (9). (14)

So, we have proved the following for the case of constant v = 1 in (14):

Theorem 6.1 (Curvature of Plane Curves) A regular unit speed plane curve has curvature
κ2 given by the rate of change with arc length of the angular direction of its tangent vector.

In fact, κ2 gives a complete classification of regular plane curves, up to a Euclidean motion:

Theorem 6.2 (Fundamental Theorem of Plane Curves) Two regular plane curves defined
on the same interval with the same curvature κ2, can be transformed into one another by application
of a translation and an orthogonal transformation.

Gray [6] proves this classification theorem and studies applications in detail, giving many examples
and a Mathematica algorithm for drawing a curve in E2 with specified curvature.

Exercises on plane curves

1. Show that a parametric equation for the line segment from (3, 5) to (6, 1) ∈ E2 is given by

` : [0, 1]→ E2 : t 7→ (3, 5) + t(3,−4).

Note that the line segment is the image of the map `. What is the tangent vector of `? Show
that it has zero acceleration and zero curvature.

2. Find another parametric equation for the line segment in the previous example, but having
a tangent vector with half the magnitude of that used for `.
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3. Clearly, there is a well-defined continuous curve given by

h : [−1, 1]→ E2 : t 7→ (t, |t|). (15)

What happens to its tangent vector at t = 0? Show that the curve has a well-defined length.

4. Show that for all θ ∈ [0, 2π] the matrix

Rz(θ) =

(
cos θ sin θ
− sin θ cos θ

)
when applied to the coordinates of a curve (viewed as a column vector) rotates the curve
through angle θ in the plane, that is, round the z-axis. Find a suitable θ value that rotates
the curve in the previous question through 30o; give an explicit equation for the rotated
curve.

5. Why does the rotation matrix leave the length of a curve unaltered? What does the rotation
matrix do to the curvature of a curve?

6. Can a reflection in the line y = x be a rotation?

7. Find θ for the rotation matrix corresponding to the linear operator

J : R2 → R2 : (p, q) 7→ (−q, p)

and show that J gives an anticlockwise rotation of π/2 in R2.

8. Apply a rotation

9. Express the equation for the parabola y = 3x2 + 2 in parametric form and find its velocity,
speed and acceleration. Show that the same image can be obtained by another curve with
velocity vector the negative of that of the first one.

10. Verify that a curve defining the unit circle in S1 ⊂ E2 with centre at the origin O given by
the set

S1 = {p ∈ E2| dist(p,O) = 1}

has a parametric equation given by

f : [0, 2π]→ E2 : t 7→ (cos t, sin t).

Find its velocity, speed, acceleration, curvature and length. Show that the same image can
be obtained by another curve with velocity vector the negative of that of the first one.

11. For a unit speed plane curve α, show that the acceleration is related to the curvature by
α′′ = κ2[α]Jα′.

12. Find an expression for κ2[α](t) in terms of its component functions.

13. Investigate the hyperbola

f : [−1, 1]→ E2 : t 7→ (cosh t, sinh t).

14. Plot the limaçon (French name for slug—why?) given by

l : [0, 2π]→ E2 : t 7→ ((2 cos t+ 1) cos t, (2 cos t+ 1) sin t)

and show that the curve passes twice through the origin in different directions, which em-
phasises why we have to specify the parameter value and not the point on the curve when
we require the velocity vector.
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15. Find a parametric equation for the equator of the sphere S2, and for a perpendicular circle
of longitude.

Implicitly defined plane curves
We know that some curves are defined implicitly, like the unit circle,

x2 + y2 − 1 = 0 (16)

However, for f(x, y) = 0 to define a parametrized curve near some point (x0, y0) where f is zero,
it is sufficient for f to have at least one of its partial derivatives nonzero there.

Exercises on implicit curves

1. Use the implicit function theorem to prove this assertion.

2. Investigate the sets of zeros of the following function and a slightly perturbed version

f(x, y) = x3 + y3 − 3xy (17)

f∗(x, y) = x3 + y3 − 3xy − 0.01 (18)

for which Gray [6] gives graphs on pages 59 and 60.

Evolutes and involutes of plane curves
The loci of centres of circles (called osculating circles), that are tangent to the plane curve α
in (1) and have radii equal to the radii of curvature at the points of tangency, is a new plane curve
called the evolute of α. So, the evolute of a circle is its centre point. Explicitly,

evolute[α] = α+
1

κ2

Jα′

‖α′‖
(19)

= α+
‖α′‖2Jα′

α′′ · Jα′
(20)

The involute, starting at c ∈ (a, b), of the plane curve α in (1) is the plane curve

involute[α, c] = α+ (c− s) α′

‖α′‖
(21)

where s is the arc length function of α.

Exercises on evolutes and involutes

1. The formula for evolute is independent of reparametrization of α.

2. The evolute of an involute of α is again α.

7 Space Curves

In 3-space we take advantage of the usual vector algebra operations available on R3 to study the
curvature (departure from linearity) and torsion (departure from planarity) of curves in space.
Since we are interested in curves with nonzero speed everywhere, we can always reparametrize to
have unit speed; then the parameter coincides with arc length along the curve, often denoted by s.

Curvature, torsion and the Frenet-Serret equations
The curvature of the unit speed space curve

β : [a, b]→ E3 (22)

is the norm of its acceleration

κ[β](s) = ‖β̈(s)‖ where β̇ =
dβ

ds
and s is arc length (23)
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Figure 1: A torus knot: This tube is a thickened embedding of a circle that has been
mapped onto the surface of a torus; note the twisting of the ruling lines, showing high
torsion when there is rapid departure from a plane.

It is easy to show that the velocity vector β̇ is perpendicular to the acceleration vector β̈ by
differentiating (β̇ · β̇) = 1. So if we take their cross product we get a vector perpendicular to both;
we have only three dimensions and so the derivative of the new vector must be expressible in terms
of the others. In this way, three, mutually perpendicular unit vectors {T,N,B} arise at each point:
T = β̇, N = Ṫ /κ and B = T ×N. These vector functions along the curve β with curvature κ are
controlled by the famous
Frenet-Serret equations for unit-speed curves:

Ṫ = κN recall that we have κ > 0 (24)

Ṅ = −κT + τB (25)

Ḃ = −τN (26)

Here, N is the principal normal, B is the binormal and τ is the torsion. {T,N,B} is called
the Frenet frame field along β, and consists of three mutually perpendicular unit vectors—a
triad that moves along the curve with T pointing always forward.

For a regular curve α with arbitrary speed
√
α′ · α′ = ||α′|| = v > 0, we have the

Frenet-Serret equations for arbitrary-speed curves:

T ′ = vκN recall that we have κ > 0 (27)

N ′ = −vκT + vτB (28)

B′ = −vτN. (29)

Exercises on Frenet-Serret equations
Here, β is the unit speed curve in equation (22).

1. Show that the helix

γ : [0, 10]→ E3 : s 7→ (2 cos(
s√
5

), 2 sin(
s√
5

),
s√
5

) (30)

is a unit speed curve and has constant curvature and torsion.

2. Why do we always have κ[β] ≥ 0?

3. For all s, β̈(s) · β̇(s) = 0; so the acceleration is always perpendicular to the acceleration along
unit-speed curves. What about α′(t) · α′′(t) on arbitrary speed curves?

4. Derive the Frenet-Serret equations for an arbitrary-speed regular curve α and show

11



that the following hold for a curve α with speed
√
α′ · α′ = ||α′|| = v > 0:

T = α′/v, N = B × T, B =
α′ × α′′

||α′ × α′′||
(31)

κ =
||α′ × α′′||

v3
(32)

τ =
α′ × α′′ · α′′′

||α′ × α′′||2
. (33)

5. Viviani’s curve: is the intersection of the cylinder (x − a)2 + y2 = a2 and the sphere x2 +
y2 + z2 = 4a2 and has parametric equation:

α : [0, 4π]→ E3 : t 7→ a(1 + cos t, sin t, 2 sin
t

2
).

An animated Frenet-Serret frame graphic for this curve is given at:
http://www.maths.manchester.ac.uk/ kd/latextut/pdfbyex.htm

Show that it has curvature and torsion given by

κ(t) =

√
13 + 3 cos t

a (3 + cos t)
3
2

and τ(t) =
6 cos t2

a(13 + 3 cos t)
.

6. Investigate the following curves for n = 0, 1, 2, 3

γ : [0, 2π
√

6]→ E3 : s 7→ (
√

6 cos(
s√
6

),

√
3

2
sin(

s√
6

),

√
3

2
sin(

ns√
6

)) (34)

7. Show that for all θ ∈ [0, 2π] the matrix

Rz(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1


when applied to the coordinates of a curve in E3 rotates the curve through angle θ in the
(x, y)-plane, that is, round the z-axis. Find a matrix Ry(θ) representing rotation round the
y-axis and hence obtain explicitly the result of rotating the curves in the previous question
by 60o round the y-axis.

8. On plane curves, τ = 0 everywhere and we use the signed curvature κ2, defined by

κ2[α](t) =
α′′(t) · Jα′(t)
‖α′(t)‖3

, where J : R2 → R2 : (p, q) 7→ (−q, p). (35)

Show how κ2 is related to κ for a general planar curve in E3, not necessarily in the z = 0
plane.

9. Give an equation of a regular curve in E2 and then apply a rotation out of the z = 0 plane.
Show that for this rotated curve the torsion is zero and find the radius of curvature 1/κ2.

10. (i) Find two matrices, Ry and Rz from SO(3) which represent, respectively, rotation by π/3
about the y-axis and rotation by π/4 about the z-axis; each rotation must be in a right-
hand-screw sense in the positive direction of its axis. Find the product matrix RyRz and
show that its transpose is its inverse.
(ii) By considering (RyRz)

−1, or otherwise, show that the curve

γ : [0,∞)→ E3 : t 7→ (
1√
2

cosh t/2 +
t

2
√

2
,−
√

2 cosh t/2 +
t√
2
,−
√

3√
2

cosh t/2−
√

3t

2
√

2
)

lies in a plane and find its curvature function and arc length function.
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11. Vertical projection from E3 onto its xy-plane is given by the map

π : E3 → E3 : (x, y, z) 7→ (x, y, 0).

A unit speed curve β : [0, L]→ E3 lies above the xy-plane and has vertical projection

π ◦ β : [0, L]→ E3 : s 7→ (
s

2
cos(log s/2),

s

2
sin(log s/2), 0).

Find explicitly a suitable β and for it compute the Frenet-Serret frame, curvature and torsion.

12. Investigate a selection of named curves from Gray [6, 1].

Classification of curves in E3

Regular space curves with nonzero curvature are classified by their curvature and torsion, up to a
Euclidean transformation (translation plus reflection and/or rotation):

Theorem 7.1 (Fundamental Theorem of Space Curves) Two space curves defined on the
same interval with the same torsion and nonzero curvature can be transformed into one another
by application of a translation and a Euclidean transformation.

Gray [6] proves this classification theorem and studies applications in detail, giving many examples
and a Mathematica algorithm for drawing a curve in E3 with specified curvature and torsion.

White’s Theorem: Lk = Tw +Wr
For a smooth simple curve α with arc length function s and arbitrary speed s′ = v = ||α′||, we
have the Frenet orthonormal frame T,N,B and the Frenet-Serret equations:

T ′ = vκN recall that we have κ > 0 (36)

N ′ = −vκT + vτB (37)

B′ = −vτN. (38)

Let U be a unit normal vector field along α. The Twist of U along α is

Tw(α,U) =
1

2π

∫
α

T × U · U̇ ds (39)

Denote by U⊥ = T ×U. Then Tw(α,U) is precisely the net rotation of the frame (T,U, U⊥) along
α in the direction T.

Express the frame (T,U, U⊥) in the form

U = cosφ N + sinφ B (40)

U⊥ = − sinφ N + cosφ B (41)

By orthonormality, U⊥ · dU = B · dN + dφ and integrating we obtain

Tw(α,U) =
1

2π

∫
α

B · dN +
1

2π

∫
α

dφ (42)

= tor(α) + Φ(α,U). (43)

So in fact we have decomposed Tw(α,U) into the total torsion of α, that is the integral of torsion,
plus the winding number of U round α.

Consider a pair of smooth simple disjoint curves α, µ with arc length functions s1, s2, defined on
the same interval. Put w(t) = µ(t) − α(t), we have a well-defined normal field along α given by
V = w − (w · T )T and, since V is never zero, we have a unit normal field U = V/||V ||. Hence,
Tw(α,U) represents also the total twist of curve µ about curve α.

Tw(α, µ) = tor(α) + Φ(α, µ). (44)
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Now, we can extend α to a smooth map α† : B2 → E3 on the whole of the unit disk B2. We define
the Link Number Lk(α, µ) of α, µ to be the number of times µ intersects α† in the direction of
its unit normal. It turns out that Lk(α, µ) is independent of the choice of extension of α and is
computable by

Lk(α, µ) =
1

4π

∫
α×µ

∂U

∂s1
× ∂U

∂s2
· U ds1 ds2 (45)

where again w(t) = µ(t)− α(t), V = w − (w · T )T and U = V/||V ||.
The Writhe of the smooth closed simple curve α is

Wr(α) =
1

4π

∫
α×α

∂U

∂s1
× ∂U

∂s2
· U ds1 ds2. (46)

White’s Theorem states that
Lk(α, µ) = Tw(α, µ) +Wr(α). (47)

Examples

1. In the case that α is planar, τ = 0 so tor(α) = 0, and since ∂U
∂s1

, ∂U
∂s2

and U all lie in a plane,
Wr(α) = 0. Then, correctly, we have Lk(α, µ) = Φ(α, µ).

2. If α lies on the surface of S2, then the choice U(t) = α(t) and hence µ(t) = 2α(t) leads to
Lk(α, µ) = 0. Also, U · T = 0 and T = dU

ds1
so Tw(α, µ) = 0 and therefore Wr(α) = 0.

White’s theorem has applications in molecular biology, where the two curves α, µ correspond to
the edges of DNA ribbons and supercoiling corresponds to writhe. Enzymes exist that alter the
constituents in the equation Lk(α, µ) = Tw(α, µ) +Wr(α) in order to compactify the molecule as
protection against a virus or locally expand it to allow replication.
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