
Universal connection and curvature

for statistical manifold geometry

Khadiga Arwini1, L. Del Riego2 and C.T.J. Dodson1

1School of Mathematics, University of Manchester, Manchester M60 1QD, UK

arwini2001@yahoo.com ctdodson@manchester.ac.uk

and
2Departamento de Matemáticas, Facultad de Ciencias

Universidad Autónoma de San Luis Potośı, San Luis Potośı, SLP, 78900 México
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Abstract

Statistical manifolds are representations of smooth families of probability density functions that
allow differential geometric methods to be applied to problems in stochastic processes, mathematical
statistics and information theory. It is common to have to consider a number of linear connections
on a given statistical manifold and so it is important to know the corresponding universal connection
and curvature; then all linear connections and their curvatures are pullbacks. An important class of
statistical manifolds is that arising from the exponential families and one particular family is that of
gamma distributions, which we showed recently to have important uniqueness properties in stochastic
processes. Here we provide formulae for universal connections and curvatures on exponential families
and give an explicit example for the manifold of gamma distributions.

1 Introduction

Information geometry is the study of Riemannian geometric properties of statistical manifolds consisting
of smooth families of probability density functions. Such manifolds are endowed with the information
metric of Rao [22], which arose from the Fisher information matrix [13]. These parts of mathematical
statistics have deep relations with general information theory; see eg Roman [23] for a modern account
of information theory from a mathematical viewpoint.
For our present purposes we may view a probability density function on Ω ⊂ Rm as a subadditive measure
function of unit weight, namely, a nonnegative map

f : Ω −→ [0,∞)∫
Ω

f = 1∫
A∪B

f ≤
∫
A

f +
∫
B

f, ∀A,B ⊆ Ω.

Usually, a probability density function depends on a set of parameters, θ1, θ2, . . . , θn and we say that
we have an n-dimensional family of probability density functions. Let Θ be the parameter space of an
n-dimensional smooth such family defined on some fixed event space Ω

{pθ|θ ∈ Θ} with
∫

Ω

pθ = 1 for all θ ∈ Θ.

Then, the derivatives of the log-likelihood function, l = log pθ, yield a matrix with entries

gij =
∫

Ω

pθ

(
∂l

∂θi
∂l

∂θj

)
= −

∫
Ω

pθ

(
∂2l

∂θi∂θj

)
,

1
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for coordinates (θi) about θ ∈ Θ ⊆ Rn.
This gives rise to a positive definite matrix, so inducing a Riemannian metric g on Θ using for coordinates
the parameters (θi); this metric is called the information metric for the family of probability density
functions—the second equality here is subject to certain regularity conditions. Amari [1] and Amari and
Nagaoka [2] provide modern accounts of the differential geometry that arises from the Fisher information
metric.

2 Systems of connections and universal objects

The concept of system (or structure) of connections was introduced by Mangiarotti and Modugno [18, 19],
they were concerned with finite-dimensional bundle representations of the space of all connections on a
fibred manifold. On each system of connections there exists a unique universal connection of which every
connection in the family of connections is a pullback. A similar relation holds between the corresponding
universal curvature and the curvatures of the connections of the system. This is a different representation
of an object similar to that introduced by Narasimhan and Ramanan [20], [21] for G-bundles, also allowing
a proof of Weil’s theorem (cf. [16, 14, 8]).

Definition 2.1 A system of connections on a fibred manifold p : E −→ M is a fibred manifold
pc : C −→M together with a first jet-valued fibred morphism

ξ : C ×M E −→ JE

over M , such that each section Γ̃ : M −→ C determines a unique connection Γ = ξ ◦ (Γ̃ ◦ p, IE) on E.
Then C is the space of connections of the system.

In the sequel we are interested in the system of linear connections on a Riemannian manifold. The system
of all linear connections is the subject of studies in eg. [16, 14, 17, 8, 9, 10, 7, 12].

Theorem 2.1 ([18, 19]) Let (C, ξ) be a system of connections on a fibred manifold p : E −→M . Then
there is a unique connection form Λ : C×M E −→ J(C×M E) On the fibred manifold π1 : C×M E −→ C
with the coordinate expression

Λ = dxλ ⊗ ∂λ + dca ⊗ ∂a + ξiλ dx
λ ⊗ ∂i.

This Λ is called the universal connection because it describes all the connections of the system.

Explicitly, each Γ̃ ∈ Sec(C/M) gives an injection (Γ̃ ◦ p, IE), of E into C × E, which is a section of π1

and Γ coincides with the restriction of Λ to this section:

Λ|(Γ̃◦p,IE)E = Γ.

A similar relation holds between its curvature Ω, called universal curvature, and the curvatures of the
connections of the system.

Ω =
1
2

[Λ,Λ] = dΛΛ : C ×M E −→ ∧2(T ∗C)⊗E V (E).

So the universal curvature Ω has the coordinate expression:

Ω =
1
2

(
ξjλ ∂jξ

i
η dx

λ ∧ dxη + 2 ∂aξiη dx
a ∧ dxη

)
⊗ ∂i .

3 Exponential family of probability density functions on R

An important class of statistical manifolds is that arising from the so-called exponential family [2] and
one case is that of gamma distributions, which we showed recently in [4, 5] to have important uniqueness
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properties for near-random stochastic processes. Note also that Hwang and Hu [15] provided an important
new characterization of gamma distributions, which helps understanding of their common application in
modelling real processes. More details on statistical manifolds in general can be found in [1, 2] and we
have provided in [6] explicit geometric neighbourhoods of independence for common bivariate processes.
In the present section we shall be concerned with the system of all linear connections on the manifold of
an arbitrary exponential family, using the tangent bundle or the frame bundle to give the system space.
We provide formulae for the universal connections and curvatures and give an explicit example for the
manifold of gamma distributions.
An n-dimensional set of probability density functions S = {pθ|θ ∈ Θ ⊂ Rn} for random variable x ∈
Ω ⊆ R is said to be an exponential family [2] when the density functions can be expressed in terms of
functions {C,F1, ..., Fn} on R and a function ϕ on Θ as:

pθ(x) = e{C(x)+
P

i(θ
i Fi(x))−ϕ(θ)}.

Then we say that (θi) are its natural coordinates, and ϕ is its potential function. From the normal-
ization condition

∫
Ω
pθ(x) dx = 1 we obtain:

ϕ(θ) = log
∫

Ω

e{C(x)+
P

i(θ
i Fi(x)}) dx .

From the definition of an exponential family, and putting ∂i = ∂
∂θi , we use the log-likelihood function

l(θ, x) = log(pθ(x)) to obtain

∂il(θ, x) = Fi(x)− ∂iϕ(θ)

and

∂i∂j l(θ, x) = −∂i∂jϕ(θ) .

The Fisher information metric g [1, 2] on the n-dimensional space of parameters Θ ⊂ Rn, equivalently
on the set S = {pθ|θ ∈ Θ ⊂ Rn}, has coordinates:

[gij ] = −
∫

Ω

[∂i∂j l(θ, x)] pθ(x) dx = ∂i∂jϕ(θ) = ϕij(θ) .

Then, (S, g) is a Riemannian n-manifold with Levi-Civita connection given by:

Γkij(θ) =
n∑
h=1

1
2
gkh (∂igjh + ∂jgih − ∂hgij)

=
n∑
h=1

1
2
gkh ∂i∂j∂hϕ(θ) =

n∑
h=1

1
2
ϕkh(θ)ϕijh(θ)

where [ϕhk(θ)] represents the inverse to [ϕhk(x)].
Next we obtain a family of symmetric connections which includes the Levi-Civita case and has significance
in mathematical statistics. Consider for α ∈ R the function Γ(α)

ij,k which maps each point θ ∈ Θ to the
following value:

Γ(α)
ij,k(θ) =

∫
Ω

(
∂i∂j l +

1− α

2
∂il ∂j l

)
∂kl pθ

=
1− α

2
∂i∂j∂kϕ(θ) =

1− α

2
ϕijk(θ) .

So we have an affine connection ∇(α) on the statistical manifold (S, g) defined by

g(∇(α)
∂i
∂j , ∂k) = Γ(α)

ij,k ,

where g is the Fisher information metric. We call this ∇(α) the α-connection and it is clearly a symmetric
connection and defines an α-curvature. We have also

∇(α) = (1− α) ∇(0) + α∇(1) ,

=
1 + α

2
∇(1) +

1− α

2
∇(−1) .
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Figure 1: Affine immersion using natural coordinates (µ, ν) in R3 for the gamma 2-manifold (G, g). The
surface is shaded by the Gaussian curvature KG which is independent of µ and monotonically decreases
from − 1

4 to almost − 1
2 as ν increases to 2.

For a submanifold M ⊂ S, the α-connection on M is simply the restriction with respect to g of the
α-connection on S. Note that the 0-connection is the Riemannian or Levi-Civita connection with respect
to the Fisher metric and its uniqueness implies that an α-connection is a metric connection if and only
if α = 0.

3.1 Example: Gamma 2-manifold (G, g)

Gamma distributions form an exponential family with probability density functions:

G = {p(x;µ, ν) = µν
xν−1

Γ(ν)
e−xµ for µ, ν ∈ R+}. (3.1)

The gamma distributions are very important in, information theory, mathematical statistics and stochas-
tic processes. This is because they contain as a special case, ν = 1, the negative exponential distribution
that represents random states, ie Poisson processes, and because of certain uniqueness properties [5, 15].
It turns out that (θi) = (µ, ν) is a natural coordinate system with corresponding potential function

ϕ(µ, ν) = log Γ(ν)− ν logµ . (3.2)

The information metric g has arc length function

ds2g =
ν

µ2
dµ2 − 2

µ
dµ dν + ψ′(ν) dν2 for µ, ν ∈ R+

where ψ(ν) = Γ′(ν)
Γ(ν) is the digamma function. The independent nonzero Levi-Civita connection compo-
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Univariate density Coordinates Mean Variance R(α)

Gaussian (µ, σ) µ σ
(
α2 − 1

)
Gamma (µ, ν) µ µ2/ν

(1−α2) (ψ′(ν)+ν ψ′′(ν))
2 (ν ψ′(ν)−1)2

Exponential µ µ µ2 0

Table 1: α-Scalar curvature R(α) of the univariate Gaussian, gamma and exponential statistical manifolds;
the logarithmic derivative of the gamma function is denoted by ψ = Γ′/Γ. The case α = 0 corresponds to
the Levi-Civita connection.

nents with respect to the natural coordinates (µ, ν) are:

Γ1
11 =

(1− 2 ν ψ′(ν))
2µ (−1 + ν ψ′(ν))

,

Γ1
12 =

ψ′(ν)
2 (ν ψ′(ν)− 1)

,

Γ1
22 =

µψ′′(ν)
2 (ν ψ′(ν)− 1)

,

Γ2
11 =

ν

2µ2 (1− ν ψ′(ν))
,

Γ2
12 =

1
2µ (ν ψ′(ν)− 1)

,

Γ2
22 =

ν ψ′′(ν)
2 (ν ψ′(ν)− 1)

.

The Riemannian 2-manifold (G, g) has been shown by Dodson and Matsuzoe [11] to admit an affine
immersion in R3. This is depicted in Figure 1, shaded by the Gaussian curvature KG , which is independent
of µ and, with increasing ν, KG monotonically decreases from − 1

4 to − 1
2 :

KG =
ψ′(ν) + ν ψ′′(ν)
4 (ν ψ′(ν)− 1)2

.

To compute the α-connection components it is convenient here to change to the orthogonal coordinates
(β = ν/µ, ν) for which the metric components are given by

ds2 =
ν

β2
dβ2 +

(
ψ′(ν)− 1

ν

)
dν2 for β, ν ∈ R+ .

Proposition 3.1 (Arwini [3]) The independent nonzero components, Γ(α)i
jk , of ∇(α) are

Γ(α)1
11 = −α+ 1

β
,

Γ(α)1
12 =

α+ 1
2 ν

,

Γ(α)2
11 =

(α− 1) ν
2β2 (ν ψ′(ν)− 1)

,

Γ(α)2
22 =

(1− α)
(
1 + ν2 ψ′′(ν)

)
2 ν (ν ψ′(ν)− 1)

.

�

Corollary 3.1 The Levi Civita connection of (G, g) is recovered by Γ(0)i
jk in (β, ν) coordinates and then

the curves ν = constant are geodesics. �
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Bivariate density Coordinates Covariance R(α)

Mckay M (α1, c, α2) α1/c
2 R

(α)
M

M1 ⊂M : α1 = 1 (c, α2) 1/c2 RM
(α)
1

M2 ⊂M : α2 = 1 (α1, c) α1/c
2 RM

(α)
2

M3: α1 + α2 = 1 (α1, c) α1/c
2 0

Table 2: α-Scalar curvature R(α) of the McKay bivariate gamma manifold; see § 3.2 for the formulae
R

(α)
M , RM

(α)
1 , RM

(α)
2 . The case α = 0 corresponds to the Levi-Civita connection.

Bivariate density Coordinates Covariance R(α)

Freund F (α1, β1, α2, β2) β1 β2−α1 α2
β1 β2 (α1+α2)

2

−3 (α2−1)
2

F1 ⊂ F : βi = αi (α1, α2) 0 0

F2 : α1 = α2, β1 = β2 (α1, β1) 1
4

(
1
α12 − 1

β1
2

)
0

F3: βi = α1 + α2 (α1, α2, β2) α1
2+α1 α2+α2

2

(α1+α2)
4 0

Table 3: α-Scalar curvature R(α) of the Freund bivariate exponential manifold. The case α = 0 corre-
sponds to the Levi-Civita connection.
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Bivariate density Coordinates Covariance R(α)

Gaussian N (µ1, µ2, σ1, σ12, σ2) σ12
9 (α2−1)

2

N1 ⊂ N : σ12 = 0 (µ1, µ2, σ1, σ2) 0 2
(
α2 − 1

)
N2: σi = σ, µi = µ (µ, σ, σ12) σ12

(
α2 − 1

)
N3: µ1 = µ2 = 0 (σ1, σ2, σ12) σ12 2

(
α2 − 1

)
Table 4: α-Scalar curvature R(α) of the bivariate Gaussian manifold. The case α = 0 corresponds to the
Levi-Civita connection.

3.2 α-Scalar curvature for common distributions

For convenience of reference we summarize curvature results in Table 1 for univariate Gaussian, gamma
and exponential distributions and in Tables 2,3,4 respectively for bivariate gamma, exponential and
Gaussian distributions, from recent work of Arwini and Dodson [4, 5, 6]. We have used Mathematica for
many calculations and we can make available the associated interactive Notebooks. The α-scalar curva-
ture for the McKay bivariate gamma manifold M and its submanifolds M1, M2, have long expressions so
we give them here:

R
(α)
M =

(
1− α2

)
(
ψ′(α2) (ψ′(α1) (ψ′(α1) + ψ′(α2))− 2ψ′′(α1))− 2ψ′(α1)ψ′′(α2)

2(ψ′(α1) + ψ′(α2)− ψ′(α1)ψ′(α2) (α1 + α2))
2

+

(
ψ′(α2)

2
ψ′′(α1) +

(
ψ′(α1)

2 − ψ′′(α1)
)
ψ′′(α2)

)
(α1 + α2)

2(ψ′(α1) + ψ′(α2)− ψ′(α1)ψ′(α2) (α1 + α2))
2 ),

ψ(αi) =
Γ′(αi)
Γ(αi)

.

RM
(α)
1 =

(
1− α2

)
(ψ′(α2) + ψ′′(α2) (1 + α2))

2(ψ′(α2) (1 + α2)− 1)2

RM
(α)
2 =

(
1− α2

)
(ψ′(α1) + ψ′′(α1) (1 + α1))

2(ψ′(α1) (1 + α1)− 1)2
.

4 Systems of linear connections

4.1 Tangent bundle system: CT × TM −→ JTM

The system of all linear connections on a manifold M has a representation on the tangent bundle

E = TM −→M

with system space

CT = {α⊗ jγ ∈ T ∗M ⊗M JTM | jγ : TM −→ TTM projects onto ITM}

Here we view ITM as a section of T ∗M⊗TM , which is a subbundle of T ∗M⊗TTM , with local expression
dxλ ⊗ ∂λ.
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The fibred morphism for this system is given by

ξT : CT ×M TM −→ JTM ⊂ T ∗M ⊗TM TTM ,

(α⊗ jγ, ν) 7−→ α(ν)jγ.

In coordinates (xλ) on M and (yλ) on TM

ξT = dxλ ⊗ (∂λ − γiλ ∂i)
= dxλ ⊗ (∂λ − yj Γijλ ∂i)

= dxλ ⊗ (∂λ − yj (
n∑
h=1

1
2
ϕih ϕjλh) ∂i)

Each section of CT −→ M , such as Γ̃ : M −→ CT : (xλ) −→ (xλ, γηθ); determines the unique linear
connection Γ = ξT ◦ (Γ̃ ◦ πT , ITM ) with Christoffel symbols Γληθ.

On the fibred manifold π1 : CT ×M TM −→ CT ; the universal connection is given by:

ΛT : CT ×M TM −→ J(CT ×M TM) ⊂ T ∗CT ⊗ T (CT ×M TM) ,
(xλ, vληκ, y

λ) 7−→ [(Xλ, V ληκ) −→ (Xλ, V ληκ, Y
ηV ληκX

κ)].

briefly,

ΛT = dxλ ⊗ ∂λ + dva ⊗ ∂a + yηviηκ dx
κ ⊗ ∂i

= dxλ ⊗ ∂λ + dva ⊗ ∂a + yη (
n∑
h=1

1
2
ϕih ϕηκh) dxκ ⊗ ∂i.

Explicitly, each Γ̃ ∈ Sec(CT /M) gives an injection (Γ̃◦πT , ITM ), of TM into CT ×TM , which is a section
of π1 and Γ coincides with the restriction of ΛT to this section:

ΛT |(Γ̃◦πT ,IT M )TM = Γ.

and the universal curvature of the connection Λ is given by:

ΩT = dΛT
ΛT : CT ×M TM −→ ∧2(T ∗CT )⊗TM V (TM).

So here the universal curvature ΩT has the coordinate expression:

ΩT =
1
2

(
ykvjkλ ∂jy

mvimη dx
λ ∧ dxη + 2 ∂aymvimη dx

a ∧ dxη
)
⊗ ∂i

=
1
2

(
yk(

n∑
h=1

1
2
ϕjh ϕkλh)∂jym(

n∑
h=1

1
2
ϕih ϕmηh)dxλ ∧ dxη

)
⊗ ∂i

+

(
∂ay

m(
n∑
h=1

1
2
ϕih ϕmηh)dxa ∧ dxη

)
⊗ ∂i .

4.2 Frame bundle system: CF × FM −→ JFM

A linear connection is also a principal (i.e. group invariant) connection on the principal bundle of frames
FM with:

E = FM −→M = FM/G

consisting of linear frames (ordered bases for tangent spaces ) with structure group the general linear
group, G = Gl(n). Here the system space is



Khadiga Arwini, L. Del Riego and C.T.J. Dodson 9

CF = JFM/G ⊂ T ∗M ⊗TM TFM/G,

consisting of G-invariant jets. The system morphism is

ξF : CF × FM −→ JFM ⊂ T ∗M ⊗TM TFM ,

([jsx], b) 7−→ [TxM 7−→ TbFM ].

In coordinates

ξF = dxλ ⊗ (∂λ −Xη ∂ηs
λ
κ) ∂̃κλ

= dxλ ⊗ (∂λ −Xη Γληκ) ∂̃κλ

= dxλ ⊗ (∂λ −Xη
n∑
h=1

1
2
ϕλh ϕηκh) ∂̃κλ

where ∂̃κλ = ∂
∂bλ

κ
is the natural base on the vertical fibre of TbFM induced by coordinates (bλκ) on FM.

Each section of CF −→ M that is projectable onto ITM , such as, Γ̂ : M −→ CF : (xλ) −→ (xλ, [jγx])
with Γληκ = ∂ηs

λ
κ; determines the unique linear connection Γ = ξF ◦(Γ̂◦πF , IFM ) with Christoffel symbols

Γληκ. On the principal G-bundle π1 : CF ×M FM −→ CF the universal connection is given by:

ΛF : CF ×M FM −→ J(CF ×M FM) ⊂ T ∗CF ⊗FM T (CF ×FM FM) ,
(xλ, vληκ, b

η
κ) 7−→ [(Xλ, Y ληκ) −→ (Xλ, Y ληκ, b

η
κv
λ
ηθX

θ)].

Briefly,

ΛF = dxλ ⊗ ∂λ + dva ⊗ ∂a + bηκv
λ
ηθ dx

θ ⊗ ∂̃κλ

= dxλ ⊗ ∂λ + dva ⊗ ∂a + bηκ (
n∑
h=1

1
2
ϕλh ϕηθh) dxθ ⊗ ∂̃κλ .

Explicitly, each Γ̃ ∈ Sec(CF /M) gives an injection (Γ̃ ◦ πF , IFM ), of FM into CF × FM , which is a
section of π1 and Γ coincides with the restriction of ΛF to this section:

ΛF |(Γ̃◦πF ,IF M )FM = Γ

and the universal curvature of the connection Λ is given by:

Ω = dΛF
ΛF : CF ×M FM −→ ∧2(T ∗CF )⊗FM V (FM).

So here the universal curvature form ΩF has the coordinate expression:

ΩF =
1
2

(
bkκv

β
kλ ∂̃κβbmω v

α
mη dx

λ ∧ dxη + 2 ∂abmω v
α
mη dx

a ∧ dxη
)
⊗ ∂̃ωα

=
1
2

(
bkκ(

n∑
h=1

1
2
ϕβh ϕkλh)∂̃κβbmω (

n∑
h=1

1
2
ϕαh ϕmηh)dxλ ∧ dxη

)
⊗ ∂̃ωα

+

(
∂ab

m
ω (

n∑
h=1

1
2
ϕαh ϕmηh)dxa ∧ dxη

)
⊗ ∂̃ωα .

5 Universal connection and curvature on the gamma manifold

For the gamma 2-manifold (G, g) we give explicit forms for the system space and its universal connection
and curvature.
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5.1 Tangent bundle system on (G, g)

The system space is

CT = {α⊗ jγ ∈ T ∗G ⊗G JTG | jγ : TG −→ TTG projects onto ITG}

and the system morphism is

ξT = dxλ ⊗ (∂λ − yjΓijλ ∂i)

= dx1 ⊗
(
∂1 − (

(1− 2 ν ψ′(ν))
2µ (−1 + ν ψ′(ν))

y1 +
ψ′(ν)

2 (ν ψ′(ν)− 1)
y2) ∂1

)
+ dx1 ⊗

(
∂1 − (

ν

2µ2 (1− ν ψ′(ν))
y1 +

1
2µ (ν ψ′(ν)− 1)

y2) ∂2

)
+ dx2 ⊗

(
ψ′(ν)

2 (ν ψ′(ν)− 1)
y1 +

µψ′′(ν)
2 (ν ψ′(ν)− 1)

y2) ∂1

)
+ dx2 ⊗

(
∂2 − (

1
2µ (ν ψ′(ν)− 1)

y1 +
ν ψ′′(ν)

2 (ν ψ′(ν)− 1)
y2) ∂2

)
.

The universal connection on the gamma manifold is given by:

ΛT = dxλ ⊗ ∂λ + diλj ⊗ ∂iλj + yτ Γiτκdx
κ ⊗ ∂i

= dxλ ⊗ ∂λ + diλj ⊗ ∂iλj

+
(

(1− 2 ν ψ′(ν))
2µ (−1 + ν ψ′(ν))

y1 +
ψ′(ν)

2 (ν ψ′(ν)− 1)
y2

)
dx1 ⊗ ∂1

+
(

ν

2µ2 (1− ν ψ′(ν))
y1 +

1
2µ (ν ψ′(ν)− 1)

y2

)
dx1 ⊗ ∂2

+
(

ψ′(ν)
2 (ν ψ′(ν)− 1)

y1 +
µψ′′(ν)

2 (ν ψ′(ν)− 1)
y2

)
dx2 ⊗ ∂1

+
(

1
2µ (ν ψ′(ν)− 1)

y1 +
ν ψ′′(ν)

2 (ν ψ′(ν)− 1)
y2

)
dx2 ⊗ ∂2 .

The universal curvature on the gamma manifold is:

ΩT =
1
2

(
ykΓjkλ ∂jy

mΓimκ dx
λ ∧ dxκ + 2 ∂aymΓimκ dx

a ∧ dxκ
)
⊗ ∂i (i = 1, 2).

The analytic form of this is known [3] but is omitted here.

5.2 Frame bundle system on (G, g)

The system space is CF = JFG/G and the system morphism is

ξF = dxλ ⊗ (∂λ −Xτ Γλτκ) ∂̃κλ

= dx1 ⊗
(
∂1 − (

(1− 2 ν ψ′(ν))
2µ (−1 + ν ψ′(ν))

X1 +
ψ′(ν)

2 (ν ψ′(ν)− 1)
X2)

)
∂̃11

+ dx2 ⊗
(
∂2 − (

ν

2µ2 (1− ν ψ′(ν))
X1 +

1
2µ (ν ψ′(ν)− 1)

X2)
)
∂̃12

+ dx1 ⊗
(
∂1 − (

ψ′(ν)
2 (ν ψ′(ν)− 1)

X1 +
µψ′′(ν)

2 (ν ψ′(ν)− 1)
X2)

)
∂̃21

+ dx2 ⊗
(
∂2 − (

1
2µ (ν ψ′(ν)− 1)

X1 +
ν ψ′′(ν)

2 (ν ψ′(ν)− 1)
X2)

)
∂̃22 .



Khadiga Arwini, L. Del Riego and C.T.J. Dodson 11

The universal connection on the gamma manifold is:

ΛF = dxλ ⊗ ∂λ + diλj ⊗ ∂iλj + bκτ Γλτθdx
θ ⊗ ∂̃κλ

= dxλ ⊗ ∂λ + diλj ⊗ ∂iλj

+
(

(1− 2 ν ψ′(ν))
2µ (−1 + ν ψ′(ν))

b11 +
ψ′(ν)

2 (ν ψ′(ν)− 1)
b21

)
dx1 ⊗ ∂̃11

+
(

ψ′(ν)
2 (ν ψ′(ν)− 1)

b11 +
µψ′′(ν)

2 (ν ψ′(ν)− 1)
b21

)
dx2 ⊗ ∂̃11

+
(

(1− 2 ν ψ′(ν))
2µ (−1 + ν ψ′(ν))

b12 +
ψ′(ν)

2 (ν ψ′(ν)− 1)
b22

)
dx1 ⊗ ∂̃21

+
(

ψ′(ν)
2 (ν ψ′(ν)− 1)

b12 +
µψ′′(ν)

2 (ν ψ′(ν)− 1)
b22

)
dx2 ⊗ ∂̃21

+
(

ν

2µ2 (1− ν ψ′(ν))
b11 +

1
2µ (ν ψ′(ν)− 1)

b21

)
dx1 ⊗ ∂̃12

+
(

1
2µ (ν ψ′(ν)− 1)

b11 +
ν ψ′′(ν)

2 (ν ψ′(ν)− 1)
b21

)
dx2 ⊗ ∂̃12

+
(

ν

2µ2 (1− ν ψ′(ν))
b12 +

1
2µ (ν ψ′(ν)− 1)

b22

)
dx1 ⊗ ∂̃22

+
(

1
2µ (ν ψ′(ν)− 1)

b12 +
ν ψ′′(ν)

2 (ν ψ′(ν)− 1)
b22

)
dx2 ⊗ ∂̃22 .

The universal curvature on the gamma manifold is:

ΩF =
1
2

(
bkκΓ

η
kλ ∂̃κηbmω Γαmκ dx

λ ∧ dxκ + 2 ∂abmω Γαmκ dx
a ∧ dxκ

)
⊗ ∂̃ωα .

The analytic form of this is known [3] but is omitted here.

6 Universal connection and curvature for α-connections [10]

Consider an exponential family having statistical n-manifold (M, g) and the system

C × FM −→ JFM : (α, b) 7→ Γ(α)(b)

where C = M × R is the direct product manifold of M with the standard real line. So the system space
C consists of a stack of copies of M . Then every Γ̃ ∈ Sec(C/M) is a constant real function on M , so
defining precisely one α-connection.
In the case of the frame bundle system, (M × R) ×M FM −→ JFM , the universal connection on the
system of α-connections is

Λ : (M × R)×M FM −→
J((M × R)×M FM) ⊂ T ∗(M × R)⊗FM T ((M × R)×FM FM) ,

(xλ, α, bηκ) 7−→ [(Xλ, Y ληκ) −→ (Xλ, Y ληκ, b
η
κ αX

θ)].

briefly,

Λ = dxλ ⊗ ∂λ + dα⊗ ∂α + bηκ αdx
θ ⊗ ∂̃κλ , λ, η, κ, θ = (1, .., n), α ∈ R

Explicitly, each Γ̃ ∈ Sec((M ×R)/M) gives an injection (Γ̃◦πF , IFM ), of FM into (M ×R)×FM , which
is a section of π1 and Γ coincides with the restriction of ΛF to this section.
The connection Λ is universal in the following sense. If Γ̃ ∈ Sec((M × R)/M), then Γ̃ is a constant real
function on M , so the induced connection Γ = ξ◦(Γ̃◦πF , IFM ) : FM −→ JFM coincides with restriction
on Λ, on the embedding by (Γ̃ ◦ πF , IFM) of FM in (M × R) ×M FM . So Γ is a pullback of Λ. The
universal curvature on the system of α-connections is

Ω : (M × R)×M FM −→ ∧2(T ∗(M × R))⊗FM V (FM).
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So Ω has the explicit form:

Ω =
1
2

(
bkκ α ∂̃κβbmω αdx

λ ∧ dxη + 2 ∂abmω αdx
h ∧ dxη

)
⊗ ∂̃ωα ,

for (κ, k, β,m, ω, λ, η, h = 1, .., n), α ∈ R.
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