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Abstract

A new image analysis technique is proposed for the evaluation of local anisotropy and

its variability in stochastic texture images� It utilizes the gradient function to provide infor�

mation on local anisotropy� from ��dimensional density images for foil materials like poly�

mer sheets� nonwoven textiles and paper� Such images can be captured by radiography or

light�transmission� results are reported for a range of paper structures� and show that the

proposed technique is more robust to unfavorable imaging conditions than other approaches�

The method has potential for on�line application to monitoring and control of anisotropy

and its variability� as well as local density itself� in continuous manufacturing processes�

Keywords texture image analysis� stochastic structures� anisotropy� den�

sity variability� machine control� monitoring

Introduction

Several approaches have been considered to analyse stochastic texture images with respect to

their anisotropy� Gradient based methods have been proposed ���� in particular for texture

analysis applications� However� such methods have limitations ��� because they rely only on

local angular information� which may lead to imprecise anisotropy estimation� and also they are

suceptible to mutual vector cancellation� which may a	ect the results of local gradient vector

operations� However� these de
ciencies found in the proposed gradient based methods can be

overcome by considering anisotropy as a global feature� described in terms of the distribution of

local gradient directions ����� A limitation of this approach is the lack of information about local

anisotropy variability� Most recent research on this topic is reported by Praast and G�ottsching

concerning the local orientation in 
bre assemblies�

The modeling of the local anisotropic process� and how it a	ects the stochastic textures originat
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ing from it� has been intensively studied� The geometric optics of anisotropic 
bre assemblies�

originating stochastic textures� were studied by Charrier and Marchessault ���� The early work

of Corte and Kallmes ��� �� laid the basis for statistical geometric representation of anisotropy in

webbased materials like paper and Perkins and Mark ��� emphasised the need for more than one

parameter in characterising anisotropy� Niskanen and Sadowski ��� compared di	erent methods

of measuring orientation in images of 
bre assemblies� and Scha	nit et al� ���� ��� developed a

model to analyse the e	ect of anisotropy on the mass variability in planar stochastic materials�

These methods have been useful to understand better the underlying anisotropic process� and its

e	ect on the stochastic textures� However� their application to direct anisotropy measurement

is not trivial�

A di	erent approach based on texture spectral density analysis in the Fourier domain was

discussed in ���� This method is discussed later� as well as some of its limitations for anisotropy

detection in stochastic textures� and it is shown that these di�culties can be reduced by using

our approach�

The next sections describe the method we propose for detection of anisotropy and its variability

in stochastic textures� Finally� some experimental results� on texture images of paper samples

are presented�

Local Spatial Anisotropy from Image Gradients

We apply our methods to the anisotropy of a paper sample� estimated via analysis of its greylevel

image� which may be obtained through di	erent transmission imaging techniques� Initially� the

image is convolved with a gradient operator� and at the gradient maxima we estimate the

gradient magnitudes and orientations� This information is then used to estimate the anisotropy

of the sample� and its spatial variability� The next sections describe the gradient operator we use�

and our technique for anisotropy estimation� The anisotropy spatial variability is also estimated

and constitutes a relevant feature for image discrimination�

Detection of Local Image Gradients

The isotropic operator for greylevel images is utilized to obtain The image gradients� represented

by a local gradient vector at each image position �x� y� ���� The �� � version of this operator is

described using the following pixel numbering convention �

�
BB�

A� A� A�

A� g�x� y� A�

A� A� A�

�
CCA ���
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Therefore� the magnitude of the gradient maximum at the image location �x� y� is obtained by �

B�x� y� �
q

�H�x� y�� � �V �x� y��� ���

where�

�H�x� y� �
�

K � �
��A� � KA� � A��� �A� � KA� � A���

�V �x� y� �
�

K � �
��A� �KA� � A��� �A� � KA� �A��� ���

and the direction � of the gradient maximum at �x� y� is given by�

��x� y� � tan���
�V �x� y�

�H�x� y�
� � ��� ���

where� � is an integer� and K �
p

�� This operator is isotropic because its sensitivity to

horizontal� vertical� and diagonal step edges is the same� Therefore� at each image location

�x� y� there is the maximum gradient magnitude B�x� y�� and its orientation ��x� y�� i�e� forming

a local gradient vector�

Local Anisotropy and its Spatial Variability

Let us consider two pixels �xi� yi� and �xj� yj�� with their gradient magnitudes normalized to

unity� These pixels are located at a distance r from each other� with the line connecting them

rotated of an angle � with respect to the horizontal axis �see Figure ��� The inner product of

the two gradient vectors associated with the pixels �xi� yi� and �xj � yj� is given by ��r��� �

cos���xi� yi� � ��xj� yj��� Papermakers report the existence of an underlying weak anisotropic

process favouring the direction of paper forming� ��r��� tends to be higher when measured

along the directions of anisotropy than along other directions� where gradients are less likely to

be aligned� Based on this observation� we can estimate the local anisotropy and its variability�

within di	erent region sizes�

Local anisotropy is detected via the distribution of the average inner product values ��r����

obtained by varying r and �� The range of r and � values de
nes a particular region size� i�e�

the neighborhood where local anisotropy is analysed�

��r��� �
�

MN

y	MX
y	�

x	NX
x	�

cos���x� y�� ��x � r cos�� y � r sin��� ���

where M �N is the number of pixels within the image area under consideration�

The shape of these ��r��� distributions encode important structural information� The stronger

the local anisotropy� the higher is the local alignment of gradient vectors� and more elliptical is

the distribution of ��r��� values� A quantitative measure of how elliptical is the distribution

may be provided by the eccentricity factor� denoted by e� which is detailed next �����
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Eccentricity of the Angular Distribution

The distribution of ��r��� values over all locations �x� y�� varying the distance r and the angle

�� represents structural anisotropy� In the case where the values are equally probable in all

angles �� the sample is isotropic �i�e� cylindrically symmetric ��r��� distribution��

The distribution of ��r��� in an anisotropic sample is assymmetric� it is approximately elliptical

and determines two orthogonal axes of extremal variance� These axes coincide with eigenvectors

of the ��r��� distribution of values� belonging to the two distinct eigenvalues ��max� �min� of the

covariance matrix� The eigenvalues de
ne an ellipse with semimajor axes given by ��max� �min��

which is described by�
���r����max

��

��max

�
���r����min

��

��min

� � ���

the eigenvalues are related to the eccentricity e of this ellipse �and of the distribution�� We

represent the eccentricity simply as the ratio �

e� �
��max

��min

���

e � �� and we need to determine �min and �max�

In general� the kth principal component direction of a distribution is along an eigenvector direc

tion belonging to the kth largest eigenvalue of the covariance matrix� Therefore� the eigenvalues

can be calculated from the covariance matrix� which is de
ned in terms of the means �r�
i as

Cv � Ef���r���i � �
r�

i ����r���j � �

r�

j �g ���

or

Cv �

�
vxx vxy

vyx vyy

�
���

where vxy is the covariance about the means �r�
x and �r�
y �

This matrix is symmetric� i�e� Cvxy � Cvyx� which implies that its eigenvalues are all real and

its eigenvectors are orthogonal� Also� because the bilinear form� Cv is positive semide
nite� its

eigenvalues are positive or zero� and given by

det�Cv � �I� � � ����

where � is the diagonal matrix of eigenvalues� and I is the identity matrix� This system can be

expressed as a polynomial

�� � �vxx � vyy�� � �vxxvyy � vxyvyx� � � ����

Finally� the eigenvalues are calculated as

�max �
�vxx � vyy� �

q
�vxx � vyy�� � �v�xy

�
����
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�min �
�vxx � vyy��

q
�vxx � vyy�� � �v�xy

�
����

and the eccentricty e is obtained using Equation� ���

Spatial Variability of Local Anisotropy

In the previous section we discussed how anisotropy can be estimated as a global measure for the

sample� However� sometimes it is also important to determine how anisotropy varies spatially

within the sample�

Considering that eigenvectors describe axes of extremal variance of the ��r��� distribution of

values� the eigenvalues �min and �max are related to the spatial variability of anisotropy along

those axes� Indeed� strong anisotropy along a particular direction is characterized by a slow

decay of ��r��� values� and a small eigenvalue associated with that direction�

We use as descriptors of anisotropy of spatial variability the reciprocal of the eigenvalues �min

and �max� here denoted simply as 	�max
and 	�min

�

	�max
�

�

�max

	�min
�

�

�min

����

Correlations and Spectra

If we want to analyze the contents of images statistically� the entire image must be considered

as a statistical quantity� namely a random �eld� In this case� an N �M image consists of an

N �M matrix whose elements are random variables� The gray values at two distinct positions

can be related with each other by measuring their correlation� One measure for the correlation

of the gray values is the expectation value for the product of the gray values at two positions�

the autocorrelation function ��� �

R�x� y�x� rx� y � ry� � EfI�x� y�I�x � rx� y � ry�g �
Q��X
m	�

Q��X
n	�

P �m�n�x� y�x� rx� y � ry� ����

The probability function P �m�n�x� y�x�rx� y�ry� has six parameters and tells us the probability

of simulataneously measuring the gray value m at the pixel �x� y� and n at the pixel �xi �

m� yi � n�� If the statistics do not depend on the position of the pixel� the random 
eld is

called homogeneous� It implies that the mean value � is constant over the whole image� and

the autocorrelation function becomes shift�invariant� Therefore� the autocorrelation takes a

simple form� and only depends on the positions of the pixels� Extending to two dimensions the

BlackmanTuckey method for autocorrelation estimation� we have �

R�rx� ry� � EfI�x� y�I�x � rx� y � ry�g �
�

NM

�N��X
x	�

�M��X
y	�

I�x� y�I�x � rx� y � ry� ����
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According to this method� the image I�x� y� has size N �M and it is appended with zeros to

the size ��N � �� � ��M � �� before it is used in Equation ��� If we subtract the mean � from

each pixel� we obtain the correlation �

C�rx� ry� �
�

NM

M��X
y	�

N��X
x	�

�I�x� y�� ���I�x � rx� y � ry�� �� ����

which is called autocovariance� and can be writen in a more simple form as �

C�rx� ry� � R�rx� ry�� �� ����

In this case� the autocovariance is a linear function of the autocorrelation�

If the autocorrelation gradually decreases with the distance of the pixels� the pixels become more

and more statistically independent� In this sense� the autocorrelation function is a description

of the interrelation between the gray values of neighboring pixels� Therefore� if gray values of

adjacent pixels have a stronger correlation along one direction� than along another direction�

the random 
eld is anisotropic� However� if correlation between gray values decreases equally in

all directions� the random 
eld is isotropic�

The Fourier transform of the autocorrelation function is the power spectrum P �wx� wy�� or spec�

tral density� of the random 
eld� It contains only information about amplitudes of the wave

numbers of the Fourier transform� and can be associated to the energy in the wave number

domain�

A stochastic texture image is often modeled as a sample of a 
rstorder Markov process� where

the correlation between points is proportional to their geometric separation� The autocovariance

function for the twodimensional Markov process is ���

C�rx� ry� � Ke�
p
��xr

�
x��

�
yr

�
y ����

where K is an energy scaling constant and 
x and 
y are spatial decay constants�

The autocovariance function can be calculated for rx� ry � �� �� �� ���� L� where L is the correlation

length considered� In this case� the parameters 
x� 
y and K have physical meaning�

The spatial decay constants 
x and 
y are related to the degree of anisotropy of the stochastic

structure �i�e� if 
x � 
y the structure is isotropic� and a deviation from this condition indicates

an anisotropic structure�� The energy scaling constant K provides information regarding the

degree of variability within the structure �e�g� small K re�ects small gray values variance��

These parameters can be obtained from the autocovariance function C�rx� ry� �

K � C��� �� ����

and


�x �
�

r�x
log�

�
C�rx� ��

K

�
����

�




�y �
�

r�y
log�

�
C��� ry�

K

�
����

the e	ect of noise can be reduced by taking the average of the estimates of 
x and 
y� at various

rx and ry�

For the particular case of a real stochastic process� such as a stochastic texture image� and

provided the autocovariance function� the power spectrum P �wx� wy� can be estimated as follows

�

P �wx� wy� �
N��X
�

M��X
�

C�rx� ry�cos�rxwx � rywy� ����

and is expressed by

P �wx� wy� �
�p

x
y

�
	
 �K

� � �w
�
x

��x
�

w�
y

��y
�

�
� ����

The discussion above shows that there exists a relationship between the shape of the auto

correlation �and the autocovariance� function� and the corresponding power spectrum� Both

functions have their decay controlled by the parameters 
x and 
y� When 
x � 
y� the process

represented is isotropic� However� if 
x �� 
y the process is anisotropic�

Therefore� methods proposed for anisotropy detection �e�g� the tensor method ���� which are

based on the shape analysis of the spectral density �such as 
tting a straight line to detect

orientation�� actually measure anisotropy based on the shape of the autocorrelation function �or

even on� the autocovariance function�� Such methods are expected to su	er from limitations

discussed in the next section�

Experimental Results and Discussion

In order to illustrate the concepts developed� we analysed the stochastic textures obtained

through ��radiographic and optical density images �using light transmission�� of paper samples

for which data is in the public domain and accessible via a hypertext document on the World

Wide Web pages�

http���www�chem�eng�utoronto�ca�papersci�PaperSci�html

These images have resolution of �

�
mm� per pixel� which was found experimentally to be su�cient

to capture the texture structural information�

The stochastic texture samples utilized were supplied by J� Silvy� and have been studied in

detail by di	erent researchers ����� The oriented sample selected� namely pxxe��c�� was made

on a pilot plant papermachine of Fourdrinier type� at a medium to high level of �occulation�

For comparision purposes� the sample md�j��a� was also included� as an example of a well

formed nearly isotropic paper from a commercial papermachine� The ��radiographic and light

transmission images of these samples are in Figure ��

�



Similar trends are observed in the plots of the ��r��� distributions obtained from ��radiographs

and light transmission images� as shown in Figures � and �� It is visible in these Figures that

��r��� decreases with r more slowly along the directions � of higher anisotropy� on the other

hand� ��r��� decreases almost uniformly with r along all directions for the nearly isotropic

sample� Also� the shape of these distributions presents nonuniformities �e�g� Figures ��b�

and ��b�� due to inhomogeneities in the paper structure�

The global anisotropy measured in the ��radiographic and light transmission images of these

samples �e� values� are shown in Table �� The e� descriptor appears to be consistent� and ranks

the samples correctly in terms of their anisotropy� Also� the descriptors 	�min
and 	�max

may

be found in Tables � and �� We clearly see the di	erence between the 	�min
and 	�max

values�

measured for the anisotropic and the nearly isotropic samples� The 	�min
values are usually

associated with the direction of stronger anisotropy� which corresponds to the x coordinate in

our examples�

The autocorrelation functions R�rx� ry� of the texture images shown in Figure � were calculated�

and the performance of the proposed descriptors measured with these data� The shape of these

functions are in Figures � and �� shown as contours and surfaces� It is evident that illumination

changes� and�or structural defects� a	ect strongly the shape of those functions� For example�

Figures ��a� and �c� re�ect the shift in illumination �and�or light transmission� intensity along

the 
eld of view� in the y direction� However� the shape of the ��r��� distribution was not

signi
cantly a	ected by this artifact� as Figures ��a� and �c� show�

The decay of R�rx� ry� values as a function of the distance �rx� ry� is slower �between � � ����

than for ��r��� values �near ������ This indicates that larger areas are necessary to estimate

R�rx� ry�� and also that descriptors based on these functions have a lower sensitivity to local

variability� Tables �� � and � con
rm that descriptor values are very similar for all textures�

within the speci
ed range of �rx� ry� distances� and not allowing a clear discrimination between

them with respect to their anisotropy �both samples appear to be nearly isotropic�� Probably�

this occurs because graylevels have a stronger spatial correlation than gradient orientations

within a stochastic texture� For this reason� techniques based on the analysis of the shape of the

autocorrelation function are expected to be less sensitive to local spatial variability� and also to

be more in�uenced by illumination and�or structural artifacts than our approach�

The proposed descriptors contain information on anisotropy required for monitoring and control

purposes� The analysis of the ��radiographic and light transmission images lead to similar

results� This observation is of practical interest because it indicates that our technique has the

potential to be applied either in laboratory� as well as� in online measurements�

Finally� we should mention that global anisotropy arises as locally oriented regions within the

texture� as our results show�
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Concluding Remarks

A method for analyzing anisotropy in planar stochastic structures� as well as its spatial variability

has been presented� This method has potential to be applied for monitoring and control of

continuous webmaking processes �e�g� papermaking machines�� or for quality control purposes

of twodimensional monitoring� It is suitable for multiple resolution �i�e� di	erent zone size�

analysis of structural properties and the distribution of local anisotropy values�
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