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Abstract

A new image analysis technique is proposed for the evaluation of local anisotropy and
its variability in stochastic texture images. It utilizes the gradient function to provide infor-
mation on local anisotropy, from 2-dimensional density images for foil materials like poly-
mer sheets, nonwoven textiles and paper. Such images can be captured by radiography or
light-transmission; results are reported for a range of paper structures, and show that the
proposed technique is more robust to unfavorable imaging conditions than other approaches.
The method has potential for on-line application to monitoring and control of anisotropy
and its variability, as well as local density itself, in continuous manufacturing processes.

Keywords TEXTURE IMAGE ANALYSIS, STOCHASTIC STRUCTURES, ANISOTROPY, DEN-
SITY VARIABILITY, MACHINE CONTROL, MONITORING

Introduction

Several approaches have been considered to analyse stochastic texture images with respect to
their anisotropy. Gradient based methods have been proposed [1], in particular for texture
analysis applications. However, such methods have limitations [9] because they rely only on
local angular information, which may lead to imprecise anisotropy estimation; and also they are
suceptible to mutual vector cancellation, which may affect the results of local gradient vector
operations. However, these deficiencies found in the proposed gradient based methods can be
overcome by considering anisotropy as a global feature, described in terms of the distribution of
local gradient directions [12]. A limitation of this approach is the lack of information about local
anisotropy variability. Most recent research on this topic is reported by Praast and Gottsching

concerning the local orientation in fibre assemblies.

The modeling of the local anisotropic process, and how it affects the stochastic textures originat-



1Ng 1o 14, Ilas DECIL LILCISIVELY studled.  111€ SCOIICLIIC OPLICS OL AlllSOLIOPIC IIDIC A55CIIDILICS,
originating stochastic textures, were studied by Charrier and Marchessault [4]. The early work
of Corte and Kallmes [3, 2] laid the basis for statistical geometric representation of anisotropy in
web-based materials like paper and Perkins and Mark [6] emphasised the need for more than one
parameter in characterising anisotropy. Niskanen and Sadowski [5] compared different methods
of measuring orientation in images of fibre assemblies, and Schaffnit et al. [10, 11] developed a
model to analyse the effect of anisotropy on the mass variability in planar stochastic materials.
These methods have been useful to understand better the underlying anisotropic process, and its
effect on the stochastic textures. However, their application to direct anisotropy measurement

is not trivial.

A different approach based on texture spectral density analysis in the Fourier domain was
discussed in [9]. This method is discussed later, as well as some of its limitations for anisotropy
detection in stochastic textures, and it is shown that these difficulties can be reduced by using

our approach.

The next sections describe the method we propose for detection of anisotropy and its variability
in stochastic textures. Finally, some experimental results, on texture images of paper samples

are presented.

Local Spatial Anisotropy from Image Gradients

We apply our methods to the anisotropy of a paper sample, estimated via analysis of its greylevel
image, which may be obtained through different transmission imaging techniques. Initially, the
image is convolved with a gradient operator, and at the gradient maxima we estimate the
gradient magnitudes and orientations. This information is then used to estimate the anisotropy
of the sample, and its spatial variability. The next sections describe the gradient operator we use,
and our technique for anisotropy estimation. The anisotropy spatial variability is also estimated

and constitutes a relevant feature for image discrimination.

Detection of Local Image Gradients

The isotropic operator for greylevel images is utilized to obtain The image gradients, represented
by a local gradient vector at each image position (z,y) [8]. The 3 x 3 version of this operator is

described using the following pixel numbering convention :
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B(z,y) = \/AH(z,y)? + AV (z,y)%, 2)
where,
1
AH(z,y) = =5 [(A2 + KAg + Ag) = (Ao + K A7 + Ag)]
1
AV (2,y) = 75 (Ao + KAy + Az) — (Ag + K A5 + Ag)] (3)
and the direction @ of the gradient maximum at (z,y) is given by:
1, AV (z,y)
1 )
- _—J) 4
Oa,y) = tan™ (X 05 + ()
where, k is an integer, and K = /2. This operator is isotropic because its sensitivity to

horizontal, vertical, and diagonal step edges is the same. Therefore, at each image location
(z,y) there is the mazimum gradient magnitude B(x,y), and its orientation 6(x,y), i.e. forming

a local gradient vector.

Local Anisotropy and its Spatial Variability

Let us consider two pixels (z;,v;) and (z;,y;), with their gradient magnitudes normalized to
unity. These pixels are located at a distance r from each other, with the line connecting them
rotated of an angle U with respect to the horizontal axis (see Figure 1). The inner product of
the two gradient vectors associated with the pixels (z;,y;) and (xj,y;) is given by ¢(r,¥) =
cos[f(x;,y;) — 0(xj,y;)]. Papermakers report the existence of an underlying weak anisotropic
process favouring the direction of paper forming; ¢(r, ¥) tends to be higher when measured
along the directions of anisotropy than along other directions, where gradients are less likely to
be aligned. Based on this observation, we can estimate the local anisotropy and its variability,

within different region sizes.

Local anisotropy is detected via the distribution of the average inner product values ¢(r, V),
obtained by varying r and W. The range of  and ¥ values defines a particular region size, i.e.

the neighborhood where local anisotropy is analysed.

1 y=M x=N
o(r, ) = UN Z Z cos[f(x,y) — O(xz + rcosp,y + rsing)] (5)

y=1 z=1

where M x N is the number of pixels within the image area under consideration.

The shape of these ¢(r, ¥) distributions encode important structural information. The stronger
the local anisotropy, the higher is the local alignment of gradient vectors, and more elliptical is

the distribution of ¢(r, ¥) values. A quantitative measure of how elliptical is the distribution

may be provided by the eccentricity factor, denoted by e, which is detailed next [12].
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The distribution of ¢(r, ¥) values over all locations (z,y), varying the distance r and the angle
U, represents structural anisotropy. In the case where the values are equally probable in all

angles W, the sample is isotropic (i.e. cylindrically symmetric ¢(r, ¥) distribution).

The distribution of ¢(r, ¥) in an anisotropic sample is assymmetric; it is approximately elliptical

and determines two orthogonal axes of extremal variance. These axes coincide with eigenvectors

of the ¢(r, ¥) distribution of values, belonging to the two distinct eigenvalues (Anaz, Amin) of the
covariance matrix. The eigenvalues define an ellipse with semimajor axes given by (Amaz, Amin),
which is described by:

(qs‘(r,;g)W)? L O D) (6)

max min

the eigenvalues are related to the eccentricity e of this ellipse (and of the distribution). We
represent the eccentricity simply as the ratio :
)\2
2
e’ = )\g““” (7)

min
e > 1, and we need to determine A, and \j,q..

In general, the k¥ principal component direction of a distribution is along an eigenvector direc-
tion belonging to the k" largest eigenvalue of the covariance matrix. Therefore, the eigenvalues

can be calculated from the covariance matrix, which is defined in terms of the means ,u;"’q' as

Cv = B{(¢(r, T); — ") (p(r, 0); — ")} (8)
Cv = [ Cew Doy ] (9)
Uyz  Vyy

where v, is the covariance about the means ph¥ and ug"l’.

This matrix is symmetric, i.e. Cvgy = Cvy,, which implies that its eigenvalues are all real and
its eigenvectors are orthogonal. Also, because the bilinear form, Cv is positive semi-definite, its

eigenvalues are positive or zero, and given by
det[Cv — Al =0 (10)

where A is the diagonal matrix of eigenvalues, and [ is the identity matrix. This system can be

expressed as a polynomial
A% — (g + yy) A + (VagVyy — Vzyye) = 0 (11)

Finally, the eigenvalues are calculated as

(Vzz + vyy) + \/(vm — vyy)? + 4vZ,
Amaz = 5 (12)
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and the eccentricty e is obtained using Equation( 7).

Spatial Variability of Local Anisotropy

In the previous section we discussed how anisotropy can be estimated as a global measure for the
sample. However, sometimes it is also important to determine how anisotropy varies spatially

within the sample.

Considering that eigenvectors describe axes of extremal variance of the ¢(r, ¥) distribution of
values, the eigenvalues A, and A\, are related to the spatial variability of anisotropy along
those axes. Indeed, strong anisotropy along a particular direction is characterized by a slow

decay of ¢(r, ¥) values, and a small eigenvalue associated with that direction.

We use as descriptors of anisotropy of spatial variability the reciprocal of the eigenvalues Ajin

and A, here denoted simply as vy, .. and v,

min *

1
)\maz =
’y )\ma:v
1
A’1’7747,77, = 14
¥ pw— (14)

Correlations and Spectra

If we want to analyze the contents of images statistically, the entire image must be considered
as a statistical quantity, namely a random field. In this case, an N X M image consists of an
N x M matrix whose elements are random variables. The gray values at two distinct positions
can be related with each other by measuring their correlation. One measure for the correlation
of the gray values is the expectation value for the product of the gray values at two positions,
the autocorrelation function [9] :
Q-1Q-1
R(z,y; 2 + 710,y +1y) = E{I(@, ) (& + 10,y +14)} = Y > P(m,n;,y;2 + 12,y + 1) (15)

m=0 n=1
The probability function P(m,n; z, y; 2+7rs, y+1y) has six parameters and tells us the probability
of simulataneously measuring the gray value m at the pixel (z,y) and n at the pixel (z; +
m,y; + n). If the statistics do not depend on the position of the pixel, the random field is
called homogeneous. It implies that the mean value p is constant over the whole image, and
the autocorrelation function becomes shift-invariant. Therefore, the autocorrelation takes a
simple form, and only depends on the positions of the pixels. Extending to two dimensions the

Blackman-Tuckey method for autocorrelation estimation, we have :

2N—22M—2
R(Twary) = E{I(z,y)] ($+Tway+ry NM Z Z $+Tmay+ry) (16)
z=0 y=0
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the size (2N — 1) x (2M — 1) before it is used in Equation 16. If we subtract the mean p from
each pixel, we obtain the correlation :

M—-1N-1

Clrry) = 537 3. LUl =it oyt —p (1)

which is called autocovariance, and can be writen in a more simple form as :
C(’rl'a Ty) = R(’rl'a Ty) - :u2 (18)

In this case, the autocovariance is a linear function of the autocorrelation.

If the autocorrelation gradually decreases with the distance of the pixels, the pixels become more
and more statistically independent. In this sense, the autocorrelation function is a description
of the interrelation between the gray values of neighboring pixels. Therefore, if gray values of
adjacent pixels have a stronger correlation along one direction, than along another direction,
the random field is anisotropic. However, if correlation between gray values decreases equally in

all directions, the random field is isotropic.

The Fourier transform of the autocorrelation function is the power spectrum P(w,,wy), or spec-
tral density, of the random field. It contains only information about amplitudes of the wave
numbers of the Fourier transform, and can be associated to the energy in the wave number

domain.

A stochastic texture image is often modeled as a sample of a first-order Markov process, where
the correlation between points is proportional to their geometric separation. The autocovariance

function for the two-dimensional Markov process is [8]
C(rg,ry) = Ke™VOiritair (19)

where K is an energy scaling constant and «, and « are spatial decay constants.

The autocovariance function can be calculated for r,,ry, = 1,2,3, ..., L, where L is the correlation

length considered. In this case, the parameters o, oy and K have physical meaning.

The spatial decay constants o and o, are related to the degree of anisotropy of the stochastic
structure (i.e. if a; = a the structure is isotropic, and a deviation from this condition indicates
an anisotropic structure). The energy scaling constant K provides information regarding the
degree of variability within the structure (e.g. small K reflects small gray values variance).

These parameters can be obtained from the autocovariance function C(ry,ry) :
K =(C(0,0) (20)

and
(21)
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the effect of noise can be reduced by taking the average of the estimates of o, and «, at various

rz and ry.

For the particular case of a real stochastic process, such as a stochastic texture image, and

provided the autocovariance function, the power spectrum P(w,, w,) can be estimated as follows

N-1M-1
P(wg,wy) = Z Z C(ry,ry)cos(rywy + rywy) (23)
0
and is expressed by
1 2K
P(wg,wy) = (24)

2 2
o [

The discussion above shows that there exists a relationship between the shape of the auto-
correlation (and the autocovariance) function, and the corresponding power spectrum. Both
functions have their decay controlled by the parameters o, and «. When o, = ay, the process

represented is isotropic. However, if a, # o, the process is anisotropic.

Therefore, methods proposed for anisotropy detection (e.g. the tensor method [9]) which are
based on the shape analysis of the spectral density (such as fitting a straight line to detect
orientation), actually measure anisotropy based on the shape of the autocorrelation function (or
even on, the autocovariance function). Such methods are expected to suffer from limitations

discussed in the next section.

Experimental Results and Discussion

In order to illustrate the concepts developed, we analysed the stochastic textures obtained
through (B-radiographic and optical density images (using light transmission), of paper samples
for which data is in the public domain and accessible via a hypertext document on the World
Wide Web pages:

http://www.chem-eng.utoronto.ca/papersci/PaperSci.html
These images have resolution of imm2 per pixel, which was found experimentally to be sufficient

to capture the texture structural information.

The stochastic texture samples utilized were supplied by J. Silvy, and have been studied in
detail by different researchers [13]. The oriented sample selected, namely pxxe50cl, was made
on a pilot plant papermachine of Fourdrinier type, at a medium to high level of flocculation.
For comparision purposes, the sample mdlj44al was also included, as an example of a well-
formed nearly isotropic paper from a commercial papermachine. The B-radiographic and light

transmission images of these samples are in Figure 2.



Olilllal LICllds alc Obselved 1l tIe Plots OL the @7, ¥ ) dlsLIIDULIONS 0DLallled L0l OD-Tadi0grapris
and light transmission images, as shown in Figures 3 and 5. It is visible in these Figures that
¢(r, T) decreases with r more slowly along the directions W of higher anisotropy; on the other
hand, W decreases almost uniformly with r along all directions for the nearly isotropic
sample. Also, the shape of these distributions presents non-uniformities (e.g. Figures 3(b)

and 5(b)) due to inhomogeneities in the paper structure.

The global anisotropy measured in the (-radiographic and light transmission images of these
samples (e? values) are shown in Table 1. The e? descriptor appears to be consistent, and ranks
the samples correctly in terms of their anisotropy. Also, the descriptors v, , and 7y, . may
be found in Tables 2 and 3. We clearly see the difference between the vy, , and v,, . values,

measured for the anisotropic and the nearly isotropic samples. The -, values are usually

min

associated with the direction of stronger anisotropy, which corresponds to the z coordinate in

our examples.

The autocorrelation functions R(r;,ry) of the texture images shown in Figure 2 were calculated,
and the performance of the proposed descriptors measured with these data. The shape of these
functions are in Figures 4 and 6, shown as contours and surfaces. It is evident that illumination
changes, and/or structural defects, affect strongly the shape of those functions. For example,

Figures 6(a) and (c) reflect the shift in illumination (and/or light transmission) intensity along

the field of view, in the y direction. However, the shape of the ¢(r, ¥) distribution was not
significantly affected by this artifact, as Figures 5(a) and (c) show.

The decay of R(ry,r,) values as a function of the distance (r;,r,) is slower (between 3 — 5%),
than for ¢(r, ¥) values (near 100%). This indicates that larger areas are necessary to estimate
R(rg,ry), and also that descriptors based on these functions have a lower sensitivity to local
variability. Tables 4, 5 and 6 confirm that descriptor values are very similar for all textures,
within the specified range of (r;,r,) distances, and not allowing a clear discrimination between
them with respect to their anisotropy (both samples appear to be nearly isotropic). Probably,
this occurs because graylevels have a stronger spatial correlation than gradient orientations
within a stochastic texture. For this reason, techniques based on the analysis of the shape of the
autocorrelation function are expected to be less sensitive to local spatial variability, and also to

be more influenced by illumination and/or structural artifacts than our approach.

The proposed descriptors contain information on anisotropy required for monitoring and control
purposes. The analysis of the B-radiographic and light transmission images lead to similar
results. This observation is of practical interest because it indicates that our technique has the

potential to be applied either in laboratory, as well as, in on-line measurements.

Finally, we should mention that global anisotropy arises as locally oriented regions within the

texture, as our results show.
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A method for analyzing anisotropy in planar stochastic structures, as well as its spatial variability

has been presented. This method has potential to be applied for monitoring and control of

continuous web-making processes (e.g. papermaking machines), or for quality control purposes

of two-dimensional monitoring. It is suitable for multiple resolution (i.e. different zone size)

analysis of structural properties and the distribution of local anisotropy values.
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Qamples || O-raatograpns || tght transmission
mdlj44al 2.5933 2.9130
pxxeblcl 17.4554 11.0301

Table 1: Comparative results for e? values in the samples of Figure( 2) for ¢(r, ¥) data.

Samples || B-radiographs || light transmission
md1lj44al 9.0089 9.0852
pxxeblcl 7.5396 7.8931

Table 2: Comparative results for vy, values in the samples of Figure( 2) for ¢(r, ¥) data.

Samples || B-radiographs || light transmission
md1j44al 11.4324 11.8691
pxxe50cl 15.4111 14.3844

Table 3: Comparative results for vy, , values in the samples of Figure( 2) for ¢(r, V) data.
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Qamples || O-raatograpns || tght transmission
mdlj44al 1.0035 1.0003
pxxeblcl 1.0238 1.0296

Table 4: Comparative results for e? values in the samples of Figure( 2) for R(r,,r,) data.

Samples || B-radiographs || light transmission
md1j44al 306.0851 299.4772
pxxed0cl 309.3622 312.4431

Table 5: Comparative results for .. values in the samples of Figure( 2) for R(r,,r,) data.

Samples || B-radiographs || light transmission
md1j44al 307.1435 299.5660
pxxed0cl 316.7275 321.6881

Table 6: Comparative results for y, . values in the samples of Figure( 2) for R(r,,r,) data.
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Figure 1: Local Angular Difference for a given r and 1.
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Figure 2: Images of S-radiographs: (a) mdljddal. (b) pxxebOcl; light transmission: (c) mdl1j44al.
(d) pxxeb0cl.
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Figure 3: Distribution of ¢(r,) for r € [1,5], shown as surfaces: (a) mdlj44al. (b) pxxeb0cl;
shown as contours: (¢) mdlj44al. (d) pxxeb0cl. (B-radiographs)
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Figure 4: Distribution of R(ry,r,) for r, and ry € [1,5], shown as surfaces: (a) mdlj44al. (b)
pxxeb0cl; shown as contours: (¢) mdljddal. (d) pxxe50cl. (B-radiographs)
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Figure 5: Distribution of ¢(r,1) for r € [1,5], shown as surfaces: (a) mdlj44al. (b) pxxeb0cl;

shown as contours: (¢) mdlj44al. (d) pxxeb0cl. (light transmission)
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Figure 6: Distribution of R(ry,r,) for r, and 7y € [1,5], shown as surfaces: (a) mdlj44al. (b)
pxxeb0cl; shown as contours: (c) mdlj44al. (d) pxxebOcl. (light transmission)
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