IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS - PART B, SMCB-E-05102002-0177 1

Information Geometric Similarity Measurement for
Near-Random Stochastic Processes

C. T. J. Dodson and Jacob Scharcanski

Abstract—We outline the information-theoretic differential Thus, gamma distributions can model a range of stochastic
geometry of gamma distributions, which contain exponential processes corresponding to non-independent clustered events,
distributions as a special case, and log-gamma distributions. for v < 1, and smoothed events, far > 1, as well as

Our arguments support the opinion that these distributions have .

a natural role in representing departures from randomness, the random gas_e. Note that the property of having sample
uniformity and Gaussian behaviour in stochastic processes. We Standard deviation independent of the mean actually char-
show also how the information geometry provides a surprisingly acterizes gamma distributions, as shown recently by Hwang
tractable Riemannian manifold and product spaces thereof, on and Hu [12]. They proved, fon > 3 independent positive
which may be represented the evolution of a stochastic Process . andqom variablesr,, zo, . . ., z, with a common continuous

or the comparison of different processes, by means of well- . . . o
founded maximum likelihood parameter estimation. Our model probability density function:, that having independence of

incorporates possible correlations among parameters. We discussthe sample mean and sample coefficient of variationy =
applications and provide some illustrations from a recent study o/z is equivalent toh being a gamma distribution. Figu@ 1

of amino acid self-clustering in protein sequences; we provide shows some sample gamma distributions, all of unit mean,
also some results from simulations for multi-symbol sequences. \\ith , — 0.5, 1, 2, 5, thus representing processes that are

Keywords: MULTI-SYMBOL SEQUENCES SEARCH, RANDOM, IN-  Clustered, random and smoothed, respectively.
FORMATION GEOMETRY, GAMMA MODELS, STOCHASTIC PROCESs  The log-likelihood function for a probability density func-
tion f is I = logf; cf eg [2], [3] for more details of
general results. Shannon’s information theoretic entropy or
‘uncertainty’ is given, up to a factor, by the negative of the

] . . expectation of the log-likelihood function. For the gamma
Elsewhere we have discussed the differential geometry &gnsities)l = log(f(t;7,v)) and the entropy is
manifolds of gamma distributions and their application to
various clustering problems and security testind eg [5], [9], [6]- S(r,v) = — /OO log(f(t; 7,v)) f(t:m,v) dt
The family of gamma distributions with event spaee= R+, ’ 0 o o
parameters, v € R* has probability density functions given

I. INTRODUCTION TO GAMMA MODELS AND THEIR
GEOMETRY

I’ T
by tV—l =v+ (1 _ V) F((V)) + lOg T (V) (|2)
v 14
ft;,v) = (f) e teRT (1.1) Y
7/ () In particular, at unit mean, the maximum entropy (or maximum
Thent = 7 is the mean andVar(t) = 72/v is the uncertainty) occurs at = 1, which is the random case, and

variance, so the coefficient of variatio Var(t)/r = 1/y/v thenSy(r,1) =1+ log . Figure[2 shows a plot of s (. v),

is independent of the mean. The special case 1 in (1) for the case of unit meam = 1. So, a Poisson process of

corresponds to the situation of the random or Poisson proc€8¥ts on a line are as disorderly as possible and among all

with mean inter-event interval. homogeneous point processes with a given density, the Poisson
For v < 1, (I.I) models a process that has larger variandd0C€SS has maximum entropy.

than the random case; this corresponds to clustering since veryhe maximum likelihood estimates,? of 7,v can be

small and very large values ofbecome more likely. expressed in terms of the mean and mean logarithm of a set
For integer v = 1,2,..., () models a process that isOf independent observations = {X;, X,..., X, }. These

Poisson but with intermediate events removed to leave or@§timates are obtained in terms of the propertiesXoby

every v'": This would evidently have a smoothing effect fofmaximizing the log-likelihood function

v > 1, Formally, the gamma distribution fanteger v is the n

v-fold convolution of the exponential distribution, called also log likx (1, v) = log <Hp(Xi5T7 y)>

the Pearson Type Il distribution.
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wherelog X = £ 3" | log X;. properties in security testing of smartcards and in modeling
At each point in parameter space the covariance of part@dl galactic cluster evolutiori [8]/[7]:

derivatives of the log-likelihood function with respect to the Proposition 1.3 (Dodson [8]):The log-gamma probability

parameters gives the Fisher information matfix,], which density functions for random variabl§ < [0, 1]

turns out to be positive definite. This matrix has entries the

11=% vy 1 1\v—1
expectations: g(N,7,v) =X (£) (log ) for (1,v) € Rt xR
) ) F )
Y T O T W v (1.8)
95 = ), \ oo’ 067 —Jo \o0iogi "~/ determine a metric spaa@ of distributions with the following
properties

i i — R+ +
for (_:oord_m_ates(e_)_ €y _.R xR . . . e [ contains the uniform distribution as the limit:
Since it is positive definite]g;;] determines a Riemannian im, 1 g(N,7,1) = g(N,1,1) = 1

metric ¢ on the parameter spacg, called the expected

. ) . . L e L contains approximations to truncated Gaussian distribu-
information metric for the parametric statistical modgl

L Lo . tions
Explicitly, the metric is given by the arc length function o~ _ &g an isometry of the Riemannian manifold of gamma
ds? — Zgij d0° do7 (1.6) distributions with information-theoretic metric. O

In fact, the log-gamma family[ (1}8) arises from the gamma

_ ~ family for the non-negative random variabie= log +,
In our case, we haVe two parameters SO we 0bta|n a R|emep'equiva|ent|y,N — e—t. SO, the gamma and |Og_gamma

nian 2-manifold and on the parameter space= {(7,) € families of distributions have a common differential geometry
R* x R*} for gamma distributions, the arc length function ighrough the information metric and the exponential distribu-
given by tions in G map onto the uniform distribution i, giving
further topological properties through the isomeiry [1].

2%

1
ds? = % dr? + <1//(V) — ) dv?* for r,v e RY, (1.7)
T v

, A. Correlation

- v) . . . .
}Nhe?w(l’_lzh_ f(é IS th_e |Og|aI’ItL1mIC derivative ?f t'hzéggnlma Clearly, in certain bivariate stochastic processes we may
unction. The 1-dimensional Subspace parameteriz YL expect that there will arise departures from randomness that

corresponds to all possible ‘random’ (Poisson) ProCEsSSEs,; orporate correlation between the variables. So it is natural

qulvglently, zxr'i/lonentlalldgstnhbutlons. ided fine i to consider bivariate gamma distributions.
odson an atsuzoel[9] have provided an affine immer- Kibble's bivariate gamma distribution has been used in a

sionin Euchde@R_ for the _Rlemanr_nan 2 man}fold of gammava”ety of applications[[13], but from our viewpoint it suffers
d.IStI’Ib'Ut'IOI’IS with mformatlon metrid (7). This may.help Nfrom the disadvantage that its two marginal gamma distribu-
visualizing the geometric shape of the gamma manifold: tions have a common dispersion parameteMoreover, the

Proposition 1.1 (Dodson and Matsuzae [9]The coordi-  i0jation of the Fisher metric and its information geometry
nates (6*,0?) = (3 = v/7,v) form a natural coordinate is intractable

§ystem_ for the gamma manifold. Ther.1 g can be.realized McKay’s bivariate gamma distribution_[14] is given by the
in EuclideanR? by the graph of the affine immersiofh, £} density function
where¢ is the transversal vector field alorig(cf Amari and

Nagaoka[[3]): f(z,y; 01,012, a2)
" s 0 B i Vet i SN
h:G—R Z(V)H v , £€=10]. [(a1)T(az) A

logI'(v) — v 1o, . .
gl'(v) &0 defined on0 < z < y < oo with parametersy;, o2, g >

O 0. Whereoy, is the covariance ofr and y. This has the

This immersion has been used to prove a general result whighitations that it constrains the random variables to the octant
by its very qualitative nature is stable under small perturbations< =z < y < oo and to have nonnegative covariance.
and hence should be useful in practice, giving confidence in tiRe information geometry of this density function yields a
use of gamma distributions to model near random processggiemannian 3-manifold which has been studied by Arwini and

Proposition 1.2 (Arwini and Dodson [1])Every Dodson [1] and will be reported elsewhere since the details of
neighbourhood of an exponential distribution contains the geometry are rather cumbersome.
neighbourhood of gamma distributions, in the subspaceln the sequel, to circumvent these difficulties in developing
topology of R3. O easily applied information geometry of bivariate gamma mani-

This means that in a rather precise semsery neighbour- folds, we introduce the notion of warped products of statistical
hood of a random process on the real line has a neighbounanifolds. A simple direct product geometry like¢ x G
hood of processes that are represented by gamma distributiorepresents the case when we have two independent stochastic

It was proved elsewhere [[8] that there is a Riemannigmmocesses subordinate to gamma distributions. Warped prod-
manifold £ consisting of log-gamma distributions and isometdcts allow us to create a new geometry from any pair of
ric with G. This log-gamma manifoldC has several useful manifolds by blending them through a warping function which
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can represent interaction; no interaction remains as the special I1l. PRODUCT GEOMETRIES
case for independent processes. Such methods are used in t
pseudo-Riemannian geometry of general relativistic spaceti
cf Beem et al([4].

*ﬂ?a practical application of the above differential geometry
% can measure departures from randomness in the gamma
manifold G. Equivalently, in the log-gamma manifold we

can measure differences between approximations to truncated
Il. CURVES AND DISTANCES ING Normal distributions or departures from a uniform distribution.

] S In fact all of these types of comparison between such
In the manifoldG of gamma models for the distribution yisriputions—or empirical sampling of them—arise in the

of intervals between events, we use the Riemannian metricdest function for approximating a given stochastic process.
measure information distances between pairs of points. INR general, however, we have distributed parameter sets
neighbourhood of a given point we can obtain a locally bilinegy optimize. First we consider the case where ausearch
approximation to this distance. Frofn {I.7) for small Va”ationﬁarameters all come from the joint families of gamma and log-

AT, Av, near(r,1p) € G; it is approximated by gamma distributions and are independent of one another. Then
we have a product manifol@® of dimension2n with n pairs
Asg ~ V—gAT2 + (W(Vo) _ 1) Av2 (11.10) of coordinates{(7i7ui)|i =1,2,... ,'n}. So, P consists of a
TH Vo product of~ copies ofG and )\ copies of L, wherey, A > 0

and~y + A = n. Hence,
As vy increases froml, the factor (¢ (vp) — Vio) decreases N
monotonically from%2 — 1. So, in the information metric, P=G"xL (111.13)
the dlﬁerenchT has increasing prominence OVAL as t_he with the n-fold direct product metric of 117)
standard deviation reduces with increasigg—corresponding

to increased temporal smoothing of event scheduling. ) v , 1 )
In particular, near the exponential distribution, where dsp = Z (2 dri + (w (vi) — 1) d”i)
(10, 10) = (1,1), is approximated by =t
\/ = + Z (TU; dr? + (z//(l/i) — VlL) duf)(lll.14)
Asg = [ AT? + ( — 1) Av? . (11.12) i=y+1 N
6 for 7;,v; € RT but v; > 1 for i > 7.

For a practical implementation we need to obtain rapie note that each component space in such products con-
estimates of distances in larger regions than can be represemi®gites two dimensions.

by quadratics in incremental coordinates. This can be achieved
using the result of Dodson and Matsuzbé [9] that established ]
geodesic foliations of the gamma manifold. Now, a geodedfe Warped products and correlation
curve is locally minimal and so a network of two non-parallel More intricate products arise in applications of geometry
sets of geodesics provides a mesh of upper bounds on distangeghysics, as discussed for example in Beem efal [4]. A
by using the triangle inequality about any point. Such warped productof two Riemannian manifold$.X, g) with
geodesic mesh is shown in Figlire 4 using the geodesic curgedrdinategz;) and(Y, h) with coordinategy;) is a manifold
7 = v andv = constant, which foliateg, as described in_[9]. (X x Y, g x ;h) with coordinatesz;) = ((x;), (v;)) under the
Explicitly, the arc length along the geodesic curves- v metric g x s h has the form
from (19 = vo,19) tO (T =v,v) iS o o o
g X hijdz'dz’ = g dx*dx’ + f(x;)hij dy'dy’
d*logT’ d*logT’
1= ) = — 5 ()l for some positive warping functionf defined onX. It is
possible that correlation may be represented to some extent
and the distance along curves of constant v, from (79,29) by a suitable choice of warping function in a warped product
to (7,10) is of statistical manifolds; this is under investigation.
o 1Ogﬂ‘ Meanwhile, it seems that some empiricism may be needed
T to introduce correlation between variables in the manifold
The functions involved in these latter two distances can #& One way would be to modify the direct product metric
obtained numerically so at any given parameter values they introducing symmetrically off-diagonal termg;, i #
can be substituted directly. In Figyrg 4 we use the base pajntwhile preserving positive definiteness. These off-diagonal
(10, 0) = (20,1) € G and combine the above two arc lengthterms could be bounded by, say, and ranked in absolute
of the geodesics to obtain an upper bound on distances frgine by the relative strengths of the corresponding correlations.
(’7’0, VQ) as
Distance|(1o, v0), (T, V)]

B. Example of 2-fold products
d*logT’
dv?

d*logT’
dv?

(11.12) Let us take for illustration the submatrix of the mettig
' fori,j =1,2,...,4; so it applies to one of the spacg$, G x

<| (v)

-
(v0)] + |0 log 70|-
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L, LxG, L2, as part of thex-fold productP. Then this part with 0 < p; < 1 and ij’f p; = 1.
of the metric tensor matriy;; will have the form

vy /T? 0 P13 P14 IV. APPLICATIONS

(Mya] = 0 ¢(m)—+  ps P24 A number of applications arise rather naturally from the
P13 P23 vo /T3 0 observation that the gamma and log-gamma distributions have
P14 P24 0 Y'(r)— a natural role in representing departures from randomness,

i
_ _ _ (Il1.15) uniformity and Gaussian behaviour in stochastic processes.
and the information distance arc length element from thige have begun studies of several such situations, some are

component of the metric tensor will be given by outlined below.
ds? = X[ M) X (111.16)
where X = (dry dvy dr dis) A. Characterizing self-clustering of amino acids

Here the off-diagonal termsp;; are symmetric and consist The data plotted on the distance surface in Figiire 4 comes
of the product of the correlation coefficiepf; = p;; between from measurements of occurrencies of individual amino acids
the two parameter spaces and the scale contrdhe scaling along a protein chain within the Saccharomyces cerevisiae
valuee must be chosen such thétt[A/;2] > 0, to ensure that genome, see Cai et all[5]. If amino acids are distributed
positive definiteness is preserved. The maximum likelihoadndomly within a sequence then they follow a Poisson process
estimates should be used for the parameter valugs;) and a histogram of the number of observations of each gap size
obtained from measured data histograms. will follow a negative exponential distribution. Our techniques

The simplest case is perhaps that of a relationship betwesow that this is not the case and that all 20 amino acids tend
the two mean valuesy, 7. For this suppose that all of theto cluster, all having’ < 1. In other words, the frequencies of
pi;j are zero except;s = p, say. Then we have to control theshort gap lengths tends to be higher and the variance of the gap

size of p in order to havelet[M;2] > 0, namely lengths is greater than expected by chance. In this application
v /72 0 P 0 we have a 1-dimensiona| spg@a Where_ the in_tervalg are
0 W () — L 0 0 between_ successive occurrencies _of a given amino acid, for all
0 0 v Vo /72 0 > 0. 20 possmlfe amino acids. Th_e maX|mum-I|keI|hopd pargmeters
0 0 0 W (v2) — V% were obtained for gamma fits to the interval distribution for

(I11.17) each amino acid.
But we know that the product of diagonal terms is positive 1he methodology here allows representation of the depar-
because this is the determinant for the trivial product spaderes from randomness of the processes that allocate gaps

ie with p = 0. Hence the constraint reduces to between occurrences of each amino acid. Figyre 4 shows
. information distances in the space of gamma models, using
p? < %% = VarVars (11.18) a geodesic mesh; the surface height represents upper bounds
72 arivars on distances fronir, ) = (20, 1), the random case with mean
_ynro ooy (.19) 7 = 20. Depicted also are the 20 data points for the set
TiT2 T1iT2 of amino acid sequences; these show clustering to differing

and so the magnitude @fis bounded by the reciprocal of thedegrees. The contour plot on the right shows the distance
geometric mean of the variances of the two marginal gamrfigction.

distributions in the product. This bound could be estimated The data for Figurg]4 consisted of sequences with of

once the domain of interest was established. the order of10° occurrencies and from this the maximum-
_ _ o likelihood parameters were obtained. Here we have then a
C. Representing multi-modal distributions reduction of some 3 million experimentally determined amino

A large class of distributions arise in practical situationacid positions to just 20 points and the qualitative result
as bimodal or multi-modal histograms. A typical situation ithat all amino acids within the Saccharomyces cerevisiae
that of several disjoint symmetric peaks. We can easily handjenome exhibit self-clustering. We might expect that such
the case when the peaks all resemble gamma or log-gansteble stochastic information in these long sequences encodes
shaped distributions; we just multiply the metric contributioimportant features that may be relevant in genetic analysis.
of each peak by the total probability fraction represented by

that peak. L aimilar :
. . B. Stochastic similarity for multi-symbol sequences
Suppose that an observed data set has a histoffravith % o y y i a
peaks giving respective fractional contributions ps, . . . , px An application of the gamma manifolg would be to

to the total probability. If each peak is well represented by Ryovide a structural model for stochastic features of intervals
gamma or log-gamma distribution, then there will be/a between consecutive occurrence of symbols through multi-

dimensional subspace corresponding to such histograms S4Pol sequences. If the intervals between occurrences of
its metric will be a given symbol exhibit the property that their coefficient of

ik ) variation is independent of the mean, then their distribution
ds?, = Zpi (IT/; dr? + (UJ'(W) _ V) dViZ) (I.20) may be modeled by a gamma distribution. Clustering<(1)
Pt ; would occur when the symbol has greater frequency in certain

7 ?
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T Uniform TT Ezponential Riemannian manifold and product spaces thereof, on which
Probability v T | Probability v T may be represented the evolution of a stochastic process or the
a 02 e o 1o 2221 comparison of different processes, by means of well-founded
cC 0.25 129 4.00 0.17 116 5.9 maximum likelihood parameter estimation.
D 0.25 1.32  3.99 0.10 1.05 9.80
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ft:1,v)
1.6¢
v = 0.5 (Clustered)
1.4
1.2¢ E
1ty 21 (Random)
O. 87 d)
0.6} =5 (Smoothed)
0.4;
0.2;

1 1.25 1.5 1.75
Inter-event intervat

0.25 0.5 0.75

Fig. 1
Probability density functionsf (¢; 7,v), for gamma distributions of
inter-event intervalg with unit meanr =1, andv = 0.5, 1, 2, 5. The
caser = 1 corresponds to an exponential distribution from an underlying
Poisson processy # 1 represents some organization—clustering or
smoothing.
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Fig. 2
Ingormation entropysS (7, v), for gamma distributions of inter-event

intervalst with unit meanr = 1.

of Guelph, U. of East Anglia and U. Manchesterg(N; T, V)

0.2 Offy 3 0.6 0.8
Log-gamma probability density functiogg§N; 7, v), WIJM central mean
= 0.5, andv = 0.5, 1, 2, 5. The caser = 1 is the uniform distribution,
v < 1 corresponds to clustering in the underlying spatial process;
converselyy > 1 corresponds to smoothing.



IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS - PART B, SMCB-E-05102002-0177 7

Distance from(r,v) = (4.7,1) in G

Distance from(r,v) = (20,1) in G

1

Fig. 5

Distances in the space of gamma models, using a geodesic mesh. The
surface height represents upper bounds on distances from) = (4.7, 1),
the random case with mean= 4.7. Depicted also are data points from
Table[] for two sample simulations of sequences of length 10,000 with 4
symbols. The small points near the centre are from a uniform distribution of

symbol abundances; the four larger points are from an exponential
distribution of abundances.

Fig. 4

Distances in the space of gamma models, using a geodesic mesh. The
surface height represents upper bounds on distances from) = (20, 1),

the random case with mean= 20. Depicted also are 20 data points for a
set of amino acid sequences with clustering to differing degrees.
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