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Information Geometric Similarity Measurement for
Near-Random Stochastic Processes

C. T. J. Dodson and Jacob Scharcanski

Abstract— We outline the information-theoretic differential
geometry of gamma distributions, which contain exponential
distributions as a special case, and log-gamma distributions.
Our arguments support the opinion that these distributions have
a natural role in representing departures from randomness,
uniformity and Gaussian behaviour in stochastic processes. We
show also how the information geometry provides a surprisingly
tractable Riemannian manifold and product spaces thereof, on
which may be represented the evolution of a stochastic process
or the comparison of different processes, by means of well-
founded maximum likelihood parameter estimation. Our model
incorporates possible correlations among parameters. We discuss
applications and provide some illustrations from a recent study
of amino acid self-clustering in protein sequences; we provide
also some results from simulations for multi-symbol sequences.
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I. I NTRODUCTION TO GAMMA MODELS AND THEIR

GEOMETRY

Elsewhere we have discussed the differential geometry of
manifolds of gamma distributions and their application to
various clustering problems and security testing eg [5], [9], [6].
The family of gamma distributions with event spaceΩ = R+,
parametersτ, ν ∈ R+ has probability density functions given
by

f(t; τ, ν) =
(ν
τ

)ν tν−1

Γ(ν)
e−tν/τ t ∈ R+ (I.1)

Then t̄ = τ is the mean andV ar(t) = τ2/ν is the
variance, so the coefficient of variation

√
V ar(t)/τ = 1/

√
ν

is independent of the mean. The special caseν = 1 in (I.1)
corresponds to the situation of the random or Poisson process
with mean inter-event intervalτ.

For ν < 1, (I.1) models a process that has larger variance
than the random case; this corresponds to clustering since very
small and very large values oft become more likely.

For integer ν = 1, 2, . . . , (I.1) models a process that is
Poisson but with intermediate events removed to leave only
every νth; This would evidently have a smoothing effect for
ν > 1, Formally, the gamma distribution forinteger ν is the
ν-fold convolution of the exponential distribution, called also
the Pearson Type III distribution.
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Thus, gamma distributions can model a range of stochastic
processes corresponding to non-independent clustered events,
for ν < 1, and smoothed events, forν > 1, as well as
the random case. Note that the property of having sample
standard deviation independent of the mean actually char-
acterizes gamma distributions, as shown recently by Hwang
and Hu [12]. They proved, forn ≥ 3 independent positive
random variablesx1, x2, . . . , xn with a common continuous
probability density functionh, that having independence of
the sample mean̄x and sample coefficient of variationcv =
σ/x̄ is equivalent toh being a gamma distribution. Figure 1
shows some sample gamma distributions, all of unit mean,
with ν = 0.5, 1, 2, 5, thus representing processes that are
clustered, random and smoothed, respectively.

The log-likelihood function for a probability density func-
tion f is l = log f ; cf eg [2], [3] for more details of
general results. Shannon’s information theoretic entropy or
‘uncertainty’ is given, up to a factor, by the negative of the
expectation of the log-likelihood function. For the gamma
densities (I.1)l = log(f(t; τ, ν)) and the entropy is

Sf (τ, ν) = −
∫ ∞

0

log(f(t; τ, ν)) f(t; τ, ν) dt

= ν + (1− ν)
Γ′(ν)
Γ(ν)

+ log
τ Γ(ν)
ν

. (I.2)

In particular, at unit mean, the maximum entropy (or maximum
uncertainty) occurs atν = 1, which is the random case, and
thenSf (τ, 1) = 1 + log τ. Figure 2 shows a plot ofSf (τ, ν),
for the case of unit meanτ = 1. So, a Poisson process of
points on a line are as disorderly as possible and among all
homogeneous point processes with a given density, the Poisson
process has maximum entropy.

The maximum likelihood estimateŝτ , ν̂ of τ, ν can be
expressed in terms of the mean and mean logarithm of a set
of independent observationsX = {X1, X2, . . . , Xn}. These
estimates are obtained in terms of the properties ofX by
maximizing the log-likelihood function

log likX(τ, ν) = log

(
n∏

i=1

p(Xi; τ, ν)

)
with the following result that is easily applied to experimental
data{X1, X2, . . . , Xn}.

τ̂ = X =
1
n

n∑
i=1

Xi (I.3)

log ν̂ − Γ′(ν̂)
Γ(ν̂)

= logX − logX (I.4)
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wherelogX = 1
n

∑n
i=1 logXi.

At each point in parameter space the covariance of partial
derivatives of the log-likelihood function with respect to the
parameters gives the Fisher information matrix,[gij ], which
turns out to be positive definite. This matrix has entries the
expectations:

gij =
∫ ∞

0

(
∂l

∂θi

∂l

∂θj

)
dt = −

∫ ∞

0

(
∂2l

∂θi∂θj

)
dt (I.5)

for coordinates(θi) ∈ G = R+ × R+.
Since it is positive definite,[gij ] determines a Riemannian

metric g on the parameter spaceG, called the expected
information metric for the parametric statistical modelG.
Explicitly, the metric is given by the arc length function

ds2 =
∑
i,j

gij dθ
i dθj . (I.6)

In our case, we have two parameters so we obtain a Rieman-
nian 2-manifold and on the parameter spaceG = {(τ, ν) ∈
R+×R+} for gamma distributions, the arc length function is
given by

ds2 =
ν

τ2
dτ2 +

(
ψ′(ν)− 1

ν

)
dν2 for τ, ν ∈ R+, (I.7)

whereψ(ν) = Γ′(ν)
Γ(ν) is the logarithmic derivative of the gamma

function. The 1-dimensional subspace parameterized byν = 1
corresponds to all possible ‘random’ (Poisson) processes, or
equivalently, exponential distributions.

Dodson and Matsuzoe [9] have provided an affine immer-
sion in EuclideanR3 for the Riemannian 2-manifold of gamma
distributions with information metric (I.7). This may help in
visualizing the geometric shape of the gamma manifold:

Proposition 1.1 (Dodson and Matsuzoe [9]):The coordi-
nates (θ1, θ2) = (β = ν/τ, ν) form a natural coordinate
system for the gamma manifoldG. Then G can be realized
in EuclideanR3 by the graph of the affine immersion{h, ξ}
whereξ is the transversal vector field alongh (cf Amari and
Nagaoka [3]):

h : G → R3 :
(
β
ν

)
7→

 β
ν

log Γ(ν)− ν log β

 , ξ =

 0
0
1

 .

�
This immersion has been used to prove a general result which
by its very qualitative nature is stable under small perturbations
and hence should be useful in practice, giving confidence in the
use of gamma distributions to model near random processes.

Proposition 1.2 (Arwini and Dodson [1]):Every
neighbourhood of an exponential distribution contains a
neighbourhood of gamma distributions, in the subspace
topology ofR3. �

This means that in a rather precise sense,every neighbour-
hood of a random process on the real line has a neighbour-
hood of processes that are represented by gamma distributions.

It was proved elsewhere [8] that there is a Riemannian
manifoldL consisting of log-gamma distributions and isomet-
ric with G. This log-gamma manifoldL has several useful

properties in security testing of smartcards and in modeling
of galactic cluster evolution [8], [7]:

Proposition 1.3 (Dodson [8]):The log-gamma probability
density functions for random variableN ∈ [0, 1]

g(N, τ, ν) =
1
N

1− ν
τ ( ν

τ )ν (log 1
N )ν−1

Γ(ν)
for (τ, ν) ∈ R+×R+

(I.8)
determine a metric spaceL of distributions with the following
properties
• L contains the uniform distribution as the limit:
limτ→1 g(N, τ, 1) = g(N, 1, 1) = 1
• L contains approximations to truncated Gaussian distribu-
tions
• L ≡ G is an isometry of the Riemannian manifold of gamma
distributions with information-theoretic metric. �
In fact, the log-gamma family (I.8) arises from the gamma
family (I.1) for the non-negative random variablet = log 1

N ,
or equivalently,N = e−t. So, the gamma and log-gamma
families of distributions have a common differential geometry
through the information metric and the exponential distribu-
tions in G map onto the uniform distribution inL, giving
further topological properties through the isometry [1].

A. Correlation

Clearly, in certain bivariate stochastic processes we may
expect that there will arise departures from randomness that
incorporate correlation between the variables. So it is natural
to consider bivariate gamma distributions.

Kibble’s bivariate gamma distribution has been used in a
variety of applications [13], but from our viewpoint it suffers
from the disadvantage that its two marginal gamma distribu-
tions have a common dispersion parameterν. Moreover, the
calculation of the Fisher metric and its information geometry
is intractable.

McKay’s bivariate gamma distribution [14] is given by the
density function

f(x, y;α1, σ12, α2)

=
( α1

σ12
)

(α1+α2)
2 xα1−1(y − x)α2−1e

−
√

α1
σ12

y

Γ(α1)Γ(α2)
, (I.9)

defined on0 < x < y < ∞ with parametersα1, σ12, α2 >
0. Where σ12 is the covariance ofx and y. This has the
limitations that it constrains the random variables to the octant
0 < x < y < ∞ and to have nonnegative covariance.
The information geometry of this density function yields a
Riemannian 3-manifold which has been studied by Arwini and
Dodson [1] and will be reported elsewhere since the details of
the geometry are rather cumbersome.

In the sequel, to circumvent these difficulties in developing
easily applied information geometry of bivariate gamma mani-
folds, we introduce the notion of warped products of statistical
manifolds. A simple direct product geometry likeG × G
represents the case when we have two independent stochastic
processes subordinate to gamma distributions. Warped prod-
ucts allow us to create a new geometry from any pair of
manifolds by blending them through a warping function which
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can represent interaction; no interaction remains as the special
case for independent processes. Such methods are used in the
pseudo-Riemannian geometry of general relativistic spacetime,
cf Beem et al [4].

II. CURVES AND DISTANCES ING

In the manifoldG of gamma models for the distribution
of intervals between events, we use the Riemannian metric to
measure information distances between pairs of points. In a
neighbourhood of a given point we can obtain a locally bilinear
approximation to this distance. From (I.7) for small variations
∆τ,∆ν, near(τ0, ν0) ∈ G; it is approximated by

∆sG ≈

√
ν0
τ2
0

∆τ2 +
(
ψ′(ν0)−

1
ν0

)
∆ν2 . (II.10)

As ν0 increases from1, the factor(ψ′(ν0) − 1
ν0

) decreases

monotonically from π2

6 − 1. So, in the information metric,
the difference∆τ has increasing prominence over∆ν as the
standard deviation reduces with increasingν0—corresponding
to increased temporal smoothing of event scheduling.

In particular, near the exponential distribution, where
(τ0, ν0) = (1, 1), (II.10) is approximated by

∆sG ≈

√
∆τ2 +

(
π2

6
− 1
)

∆ν2 . (II.11)

For a practical implementation we need to obtain rapid
estimates of distances in larger regions than can be represented
by quadratics in incremental coordinates. This can be achieved
using the result of Dodson and Matsuzoe [9] that established
geodesic foliations of the gamma manifold. Now, a geodesic
curve is locally minimal and so a network of two non-parallel
sets of geodesics provides a mesh of upper bounds on distances
by using the triangle inequality about any point. Such a
geodesic mesh is shown in Figure 4 using the geodesic curves
τ = ν andν = constant, which foliateG, as described in [9].

Explicitly, the arc length along the geodesic curvesτ = ν
from (τ0 = ν0, ν0) to (τ = ν, ν) is

|d
2 log Γ
dν2

(ν)− d2 log Γ
dν2

(ν0)|

and the distance along curves of constantν = ν0 from (τ0, ν0)
to (τ, ν0) is

|ν0 log
τ0
τ
|

The functions involved in these latter two distances can be
obtained numerically so at any given parameter values they
can be substituted directly. In Figure 4 we use the base point
(τ0, ν0) = (20, 1) ∈ G and combine the above two arc lengths
of the geodesics to obtain an upper bound on distances from
(τ0, ν0) as
Distance[(τ0, ν0), (τ, ν)]

≤ |d
2 log Γ
dν2

(ν)− d2 log Γ
dν2

(ν0)|+ |ν0 log
τ0
τ
|. (II.12)

III. PRODUCT GEOMETRIES

In a practical application of the above differential geometry
we can measure departures from randomness in the gamma
manifold G. Equivalently, in the log-gamma manifoldL we
can measure differences between approximations to truncated
Normal distributions or departures from a uniform distribution.

In fact all of these types of comparison between such
distributions—or empirical sampling of them—arise in the
cost function for approximating a given stochastic process.
In general, however, we haven distributed parameter sets
to optimize. First we consider the case where ourn search
parameters all come from the joint families of gamma and log-
gamma distributions and are independent of one another. Then
we have a product manifoldP of dimension2n with n pairs
of coordinates{(τi, νi)|i = 1, 2, . . . , n}. So,P consists of a
product ofγ copies ofG andλ copies ofL, whereγ, λ ≥ 0
andγ + λ = n. Hence,

P = Gγ × Lλ (III.13)

with the n-fold direct product metric of (I.7)

ds2P =
γ∑

i=1

(
νi

τ2
i

dτ2
i +

(
ψ′(νi)−

1
νi

)
dν2

i

)
+

n∑
i=γ+1

(
νi

τ2
i

dτ2
i +

(
ψ′(νi)−

1
νi

)
dν2

i

)
(III.14)

for τi, νi ∈ R+ but νi ≥ 1 for i > γ.

We note that each component space in such products con-
tributes two dimensions.

A. Warped products and correlation

More intricate products arise in applications of geometry
to physics, as discussed for example in Beem et al [4]. A
warped productof two Riemannian manifolds(X, g) with
coordinates(xi) and(Y, h) with coordinates(yi) is a manifold
(X×Y, g×f h) with coordinates(zi) = ((xi), (yi)) under the
metric g ×f h has the form

g ×f hij dz
idzj = gij dx

idxj + f(xi)hij dy
idyj

for some positive warping function,f defined onX. It is
possible that correlation may be represented to some extent
by a suitable choice of warping function in a warped product
of statistical manifolds; this is under investigation.

Meanwhile, it seems that some empiricism may be needed
to introduce correlation between variables in the manifold
P. One way would be to modify the direct product metric
by introducing symmetrically off-diagonal termsgij , i 6=
j, while preserving positive definiteness. These off-diagonal
terms could be bounded by±ε, say, and ranked in absolute
size by the relative strengths of the corresponding correlations.

B. Example of 2-fold products

Let us take for illustration the submatrix of the metricgij

for i, j = 1, 2, . . . , 4; so it applies to one of the spacesG2, G×
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L, L×G, L2, as part of then-fold productP. Then this part
of the metric tensor matrixgij will have the form

[M12] =


ν1/τ

2
1 0 ρ13 ρ14

0 ψ′(ν1)− 1
ν1

ρ23 ρ24

ρ13 ρ23 ν2/τ
2
2 0

ρ14 ρ24 0 ψ′(ν2)− 1
ν2


(III.15)

and the information distance arc length element from this
component of the metric tensor will be given by

ds2 = X[M12]XT (III.16)

whereX = (dτ1 dν1 dτ2 dν2)
Here the off-diagonal termsερij are symmetric and consist

of the product of the correlation coefficientρij = ρji between
the two parameter spaces and the scale controlε. The scaling
valueε must be chosen such thatdet[M12] > 0, to ensure that
positive definiteness is preserved. The maximum likelihood
estimates should be used for the parameter values(τi, νi)
obtained from measured data histograms.

The simplest case is perhaps that of a relationship between
the two mean values,τ1, τ2. For this suppose that all of the
ρij are zero exceptρ13 = ρ, say. Then we have to control the
size ofρ in order to havedet[M12] > 0, namely∣∣∣∣∣∣∣∣

ν1/τ
2
1 0 ρ 0

0 ψ′(ν1)− 1
ν1

0 0
ρ 0 ν2/τ

2
2 0

0 0 0 ψ′(ν2)− 1
ν2

∣∣∣∣∣∣∣∣ > 0.

(III.17)
But we know that the product of diagonal terms is positive

because this is the determinant for the trivial product space,
ie with ρ = 0. Hence the constraint reduces to

ρ2 <
ν1
τ2
1

ν2
τ2
2

=
1

V ar1 V ar2
(III.18)

−
√
ν1ν2
τ1τ2

< ρ < +
√
ν1ν2
τ1τ2

(III.19)

and so the magnitude ofρ is bounded by the reciprocal of the
geometric mean of the variances of the two marginal gamma
distributions in the product. This bound could be estimated
once the domain of interest was established.

C. Representing multi-modal distributions

A large class of distributions arise in practical situations
as bimodal or multi-modal histograms. A typical situation is
that of several disjoint symmetric peaks. We can easily handle
the case when the peaks all resemble gamma or log-gamma
shaped distributions; we just multiply the metric contribution
of each peak by the total probability fraction represented by
that peak.

Suppose that an observed data set has a histogramH with k
peaks giving respective fractional contributionsp1, p2, . . . , pk

to the total probability. If each peak is well represented by a
gamma or log-gamma distribution, then there will be a2k-
dimensional subspace corresponding to such histograms and
its metric will be

ds2H =
i=k∑
i=1

pi

(
νi

τ2
i

dτ2
i +

(
ψ′(νi)−

1
νi

)
dν2

i

)
(III.20)

with 0 ≤ pi ≤ 1 and
∑i=k

i=1 pi = 1.

IV. A PPLICATIONS

A number of applications arise rather naturally from the
observation that the gamma and log-gamma distributions have
a natural role in representing departures from randomness,
uniformity and Gaussian behaviour in stochastic processes.
We have begun studies of several such situations, some are
outlined below.

A. Characterizing self-clustering of amino acids

The data plotted on the distance surface in Figure 4 comes
from measurements of occurrencies of individual amino acids
along a protein chain within the Saccharomyces cerevisiae
genome, see Cai et al [5]. If amino acids are distributed
randomly within a sequence then they follow a Poisson process
and a histogram of the number of observations of each gap size
will follow a negative exponential distribution. Our techniques
show that this is not the case and that all 20 amino acids tend
to cluster, all havingν < 1. In other words, the frequencies of
short gap lengths tends to be higher and the variance of the gap
lengths is greater than expected by chance. In this application
we have a 1-dimensional spaceG where the intervals are
between successive occurrencies of a given amino acid, for all
20 possible amino acids. The maximum-likelihood parameters
were obtained for gamma fits to the interval distribution for
each amino acid.

The methodology here allows representation of the depar-
tures from randomness of the processes that allocate gaps
between occurrences of each amino acid. Figure 4 shows
information distances in the space of gamma models, using
a geodesic mesh; the surface height represents upper bounds
on distances from(τ, ν) = (20, 1), the random case with mean
τ = 20. Depicted also are the 20 data points for the set
of amino acid sequences; these show clustering to differing
degrees. The contour plot on the right shows the distance
function.

The data for Figure 4 consisted of sequences with of
the order of105 occurrencies and from this the maximum-
likelihood parameters were obtained. Here we have then a
reduction of some 3 million experimentally determined amino
acid positions to just 20 points and the qualitative result
that all amino acids within the Saccharomyces cerevisiae
genome exhibit self-clustering. We might expect that such
stable stochastic information in these long sequences encodes
important features that may be relevant in genetic analysis.

B. Stochastic similarity for multi-symbol sequences

An application of the gamma manifoldG would be to
provide a structural model for stochastic features of intervals
between consecutive occurrence of symbols through multi-
symbol sequences. If the intervals between occurrences of
a given symbol exhibit the property that their coefficient of
variation is independent of the mean, then their distribution
may be modeled by a gamma distribution. Clustering (ν < 1)
would occur when the symbol has greater frequency in certain
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I Uniform II Exponential
Probability ν τ Probability ν τ

A 0.25 1.27 4.03 0.45 1.75 2.22
B 0.25 1.39 3.98 0.28 1.38 3.59
C 0.25 1.29 4.00 0.17 1.16 5.89
D 0.25 1.32 3.99 0.10 1.05 9.80

TABLE I

Typical simulation results for 4-symbol sequences of length 10,000, with the

symbols having abundance distributions: I uniform and II exponential.

These datapoints are plotted in Figure 5.

sections; smoothing (ν > 1) would occur for symbols that are
more regularly spaced than at random.

In order to illustrate how the metric might benefit the study
of stochastic sequences of symbols, we have developed a
simulator which generates a wide range of such sequences,
of arbitrary length and with arbitrarily many symbols. The
probability of occurrence of symbols is either uniformly
distributed over symbol types or not; if it is not uniform, then
we can represent the ranked probability values by a triangular-
type distribution—exponential serves well enough.

We extract some information from such simulated sequences
by computing the maximum likelihood estimate of gamma
distribution parameters(τk, νk) for each symbolk.

Sample results from sequences of length 10,000 using 4
symbols are shown in Table I for uniform and exponential
abundance distributions, symbols being chosen independently
with replacement. Figure 5 shows the results, illustrating the
distances in the space of gamma models, using a geodesic
mesh. The surface height represents upper bounds on distances
from (τ, ν) = (4.7, 1), the random case with meanτ = 4.7.
Depicted also are data points from Table I for two sample
simulations of sequences of length 10,000 with 4 symbols. The
small points near the centre are from a uniform distribution
of symbol abundances; the four larger points are from an
exponential distribution of abundances.

We see from Figure 5 that both processes yield sequences of
symbols all exhibiting more smoothing than random, namely
all have ν > 1. In the case of the nonuniform abundances,
we observe, as expected that the mean intervalτ between
occurrences of a symbol decreases with increasing abundance,
essentially one is a reciprocal of the other. The other parameter,
ν, increases also with abundance, in a systematic way.

The extraction of such features from long multi-symbol
sequences might be of value in monitoring and managing in-
formation flow through large networks. In such cases, dynamic
management might benefit from knowledge of qualitative and
partially quantitative properties of datastream flow simply by
exploiting stable stochastic features.

V. CONCLUDING REMARKS

We have offered arguments to support the opinion that
the gamma and log-gamma distributions have a natural role
in representing departures from randomness, uniformity and
Gaussian behaviour in stochastic processes. We show also
how the information geometry provides a surprisingly tractable

Riemannian manifold and product spaces thereof, on which
may be represented the evolution of a stochastic process or the
comparison of different processes, by means of well-founded
maximum likelihood parameter estimation.
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(1941) 137-150.

[14] K.V. Mardia.Families of Bivariate Distributions. Griffin, London
1970.

PLACE
PHOTO
HERE

Christopher T.J. Dodson 1996-Present: Profes-
sor of Mathematics, Department of Mathematics,
University of Manchester Institute of Science and
Technology, UK. 1989-96: NSERC Abitibi-Price Se-
nior Research Chair, University of Toronto, Canada.
1969-89: Department of Mathematics, Lancaster
University, UK. Research interests: Differential ge-
ometry, stochastic geometry and applications to
spacetime structure, stochastic processes and infor-
mation systems. Recent books: C.T.J. Dodson and
P.E. Parker, A User’s Guide to Algebraic Topol-

ogy Kluwer, Dordrecht 1997; C.T.J. Dodson and T. Poston, Tensor Ge-
ometry, Graduate Texts in Mathematics 120, Springer-Verlag, Berlin, New
York, Heidelberg, 1991,1997; M. Deng and C.T.J. Dodson, Paper: An
Engineered Stochastic Structure, Tappi Press, Atlanta, 1994. Homepage:
http://www.ma.umist.ac.uk/kd/homepage/dodson.html



IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS - PART B, SMCB-E-05102002-0177 6

0.25 0.5 0.75 1 1.25 1.5 1.75 2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

f(t; 1, ν)

ν = 0.5 (Clustered)

ν = 1 (Random)

ν = 2 (Smoothed)

ν = 5 (Smoothed)

Inter-event intervalt

Fig. 1

Probability density functions,f(t; τ, ν), for gamma distributions of

inter-event intervalst with unit meanτ = 1, and ν = 0.5, 1, 2, 5. The

caseν = 1 corresponds to an exponential distribution from an underlying

Poisson process;ν 6= 1 represents some organization—clustering or

smoothing.
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Information entropySf (τ, ν), for gamma distributions of inter-event

intervals t with unit meanτ = 1.
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Log-gamma probability density functionsg(N ; τ, ν), with central mean

N̄ = 0.5, and ν = 0.5, 1, 2, 5. The caseν = 1 is the uniform distribution,

ν < 1 corresponds to clustering in the underlying spatial process;

conversely,ν > 1 corresponds to smoothing.
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Distances in the space of gamma models, using a geodesic mesh. The

surface height represents upper bounds on distances from(τ, ν) = (20, 1),

the random case with meanτ = 20. Depicted also are 20 data points for a

set of amino acid sequences with clustering to differing degrees.
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Distances in the space of gamma models, using a geodesic mesh. The

surface height represents upper bounds on distances from(τ, ν) = (4.7, 1),

the random case with meanτ = 4.7. Depicted also are data points from

Table I for two sample simulations of sequences of length 10,000 with 4

symbols. The small points near the centre are from a uniform distribution of

symbol abundances; the four larger points are from an exponential

distribution of abundances.


	Introduction to gamma models and their geometry
	Correlation

	Curves and distances in G
	Product geometries
	Warped products and correlation
	Example of 2-fold products
	Representing multi-modal distributions

	Applications
	Characterizing self-clustering of amino acids
	Stochastic similarity for multi-symbol sequences

	Concluding Remarks
	References
	Biographies
	Christopher T.J. Dodson
	Jacob Scharcanski


