Public Key Cryptosystem Timing Analysis:
Evaluating Obscuring Techniques®

B. Canvel and C.T.J. Dodson,

Department of Mathematics,
University of Manchester Institute of Science and Technology,
Manchester M60 1QD, UK

August 27, 2000

Abstract

The security of encryption devices using common public key cryptosystems depends on the diffi-
culty in the task of factoring large numbers used as moduli in the exponentiation. There is a drastic
reduction in security if an attacker can obtain information about the relative computational effort
to perform the necessary steps in exponentiation algorithms. Such information may be accessible
from electromagnetic sensors placed in the vicinity of the device, or by submitting sequences of
chosen texts to a public resource server. Here we report some simple computations which provide
an upper bound on the quality of such methods of attack, by placing timing markers at procedure
changes in an implementation using C**. This type of approach may be helpful in evaluating the
effectiveness of auxiliary procedures used to obscure the internal operations of a device.

KEYWORDS: RSA, EXPONENTIATION, SQUARE AND MULTIPLY, TIMING, SECURITY, OBSCURING,
EVALUATION

1 Introduction

In public key encryption, for example using RSA, we compute R = y°(mod m) or R = y¢(mod m)
depending on whether we are encoding or decoding a message y; the (very large) modulus m is made
public. The attack depends on discovering the time taken for the computation of R for a set of chosen y
values; then, with some knowledge of the system design, it is feasible to deduce the exponents e and d.
Here, we assume that the implementation used to perform the exponentiation is the square and multiply
algorithm. In practice, suitable timing information may be obtained from data on power consumption
by the processing device, using electromagnetic sensors. Such power traces may be noisy but can be
cleaned by suitable statistical procedures.

Head’s algorithm is a method for calculating the modular product of two integers. Normally, we would
need to handle numbers of size m? when multiplying integers and y (0 < z,y < m) modulo m but
Head’s algorithm does the multiplication without introducing numbers bigger than 4m, which makes
the multiplication process faster. Using Head’s algorithm and the square-and-multiply method, we are
able to compute the modular exponentiation z™(mod m) where n = dydi_1 ...d1dp is the exponent
in binary form using the following algorithm,

Lemma 1.1 (Modular exponentiation) Let r=1
While n>0
Let d=n-2[n/2]
If d=1 then
r=xr (mod m) (using Head’s algorithm)
End If
x=x"2 (mod m) (using Head’s algorithm)
n=(n-d4)/2
End While
We then have r = z™(mod m). ([3] p. 90)

*Rump Session Presention, CRYPTO 2000, Santa Barbara, 19-24 August 2000

B. Canvel and C.T.J. Dodson 2

2 Kocher’s Attack

In the original paper on timing attacks by Kocher [4] (cf also [5, 6]), the timing attack is carried out
on the multiply step of the square and multiply algorithm. As a hypothesis, we assume that the target
system has a modular multiplication algorithm that is very fast in general but can sometimes take
longer than an entire modular exponentiation. In the algorithm, for some values of 2 and exponent r,
the calculation of zr(mod m) will be slow, and, because we know the implementation algorithm, it is
easy to find those values for which it is slow.

The exponent is odd, so we start our search on the second bit of this exponent, setting 1 to 1. Now
working on the second bit of the exponent, and using our samples, we can deduce that the second bit of
n is 0 whenever the exponentiation time is fast when 2r(mod m) is expected to be slow and 1 whenever
both operations are slow. This can be explained by the fact that if the exponent bit is set to 1 then the
modular multiplication will be performed and the overall time will be increased. The operation is carried
out for subsequent bits from the exponent until the full exponent has been recovered. In [2] is derived
a more practical version of this attack, not requiring such in-depth knowledge of the implementation of
the algorithm.

We assume that the method used to carry out the multiplication runs in constant time, independently
of the factors except when the result of the multiplication is negative and then a further addition has to
be performed, called the reduction step. As above, we set n; to 1. If the second bit of the exponent is 1,
then the modular multiplication step in the square and multiply algorithm will be performed together
with the squaring step. This yields two cases:

e reduction has to be performed
e no reduction.

If the second bit of the exponent is set to 0 though, this modular multiplication step will not be
performed. We then have three samples which can be analysed using statistical analysis.
Taken from [2] is an example of a signature algorithm using RSA and a private key & :

M, set of messages K, set of keys S, set of signed messages

A : MxK -> S : (m,k) -> A(m,k), signature of m with secret key k
B={0,1} T : Mx K >R : m -> t = T(m,k), time taken to compute
A(m,k) 0 : M -> B : m -> 0(m), an oracle, based on what we know
about the implementation, that provides some information about the
computation of A(m,k).

Based on what was said previously in this section, we can divide this algorithm into two parts, namely
L(m, k), the computation due to the additional reduction step for the second bit of the exponent,
and R(m, k), the remaining computations. Then the computation times are as follows : T'(m) =
TE(m) + TE(m) where TY(m) and TH(m) are the times to compute L(m, k) and R(m, k). The oracle
Ois

1 if mm? is done with a reduction
0 if mm?2 is done without a reduction

O:mb—){

Let us define,

My=meM:0(m)=1,
My=me M:0(m)=0,
F1 M1—>F1(m):Tm

We have,

B. Canvel and C.T.J. Dodson 3

0.45 T T T T T T T T T T

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

2 4 6 8 10 12 14 16 18 20
10110111100000010001

Figure 1: Timings for an encrypting key of size 20 bits with p and q of size 195 bits. The key bits can
be read directly from the diagram, right to left.

Given these sets, we can analyze the calculation of ¢ for F; and F5 and test

Hy : ¢(F1)? = ¢(Fh)
Hy 2 ¢(F1)? # (Fh)

which should give us the value of k2. In theory, if Hy is accepted with error probability a then ky =1
with error probability o and we can use the y2-test for significance estimates. We can continue similarly
for the next bits until the whole key has been recovered. Another way of implementing the attack is by
analyzing the square step instead of the multiplication one. This can also be seen in [2].

3 Timing Tags in C** Code

To obtain timings in C++, we used a library called timer.h, written by Roque D. Oliviera; we ran it
under Unix as it uses some of the system variables. The idea is to create an object of type timer and to
initialise it at the start of the required timed portion of the program and get a value in milliseconds at
the end of this portion of code. Here, we require a time for each exponent bit in the square and multiply
algorithm. At the end of each exponentiation, the timings obtained are stored into an array which is
returned from the exponentiation function.

For generating provable primes we used Maurer’s algorithm in an implementation and a C++ library
called LIP written by Lenstra [7]. From this library, we use the function PROVABLE_PRIME. To
obtain the sample timing results for a simple message we used following procedure.

B. Canvel and C.T.J. Dodson

0.9

0.8 1

0.7

0.6 1

0.5 1

0.4 1

0.3 A

aBit0
W Bit 1

Average time in one step of square-and-multiply in seconds

:Zd“MMMMMM’I’IMMM

L B B e . Bt B R R B R B B B B B B B B B B R H A

L8 1]

S O O D S © S & O &
S A O R G A S)

Length of p and q in bit

2
%
©
%
%
%,
%,
%,
%
%
%
%5,
183

Figure 2: Growth of average time in one step of square and multiply using 20 bit encrypting key, for bit
0 and bit 1 as the size of p, q increases from 50 to 290 bits.

FOR p,q of size p_min to p_max in steps of p_incr
FOR e of size e_min to e_max in steps of e_incr
Generate p and q of the required size and

so that q is not equal to p
Compute e
Compute phi
Set e=phi
WHILE (e,phi) not equal to 1
Generate a prime e of the required size
END WHILE
Compute d so that e*d is congruent to 1 modulo phi
Save exd mod phi into check.dat
Save (e,phi) into check.dat
Set message=12345678
Encrypt message as encr
Decrypt encr as decr
Save data used into data.dat
Save the timings into timing.dat
IF decr is not equal to encr
Save ¢‘Error’’ into check.dat
ELSE
Save encr and decr in decimal form
into check.dat
END IF
END FOR
END FOR

The full code is available in the thesis [1]. We have obtained results for p and ¢ of length varying from
50 to 290 bits in steps of 5 bits and e of length varying from 20 to 100 bits also in steps of 5 bits. The

B. Canvel and C.T.J. Dodson)

code was run on a computer with two 150Mhz SPARC processors running Solaris 2.7 and 320 Mb RAM.
As p and ¢ increase, the gap between the time intervals for a zero and a one increases significantly. For
example, looking at Figure 1, corresponding to p and ¢ of length 195 bits, we see very clearly that for a
time below 0.2 seconds, a 0 is being processed and for a time above 0.35 seconds, a 1 is being processed.
The difference in timing increased slightly more than in proportion to the size of p and ¢, as may be
seen in Figure 2.

4 Conclusions

It is possible to read off the value of the exponent by looking at the time intervals obtained from the
modular exponentiation algorithm. The length of the key only has an influence on the overall time of
execution of the modular exponentiation algorithm but the time intervals for computing one step of the
square-and-multiply algorithm are the same regardless of the length of the exponent. Hence, making
the encrypting (or decrypting) key bigger only increases the overall time taken to find its value but does
not affect the complexity of the task.

The incorporation of an obscuring procedure in a device like that described above performing encryption
or decryption would complicate, by spurious internal processes, power or timing data obtained by an
attacker. The corresponding graph to Figure 1 would be less distinct if it was subject to such obscuring
signals. Then the way to test the obscuring procedure is to compare its consequence with that resulting
from a mixture of pure timing data and noise of appropriate type. A certain minimum level of noise
would be needed to reduce the information content below that which presents a security risk. Since the
timing data represents the best possible data obtainable by an attacker, the requisite amount of noise
to obscure it acceptably can be measured, so the obscuring procedure may be evaluated.

References

[1] B. Canvel. Timing Tags for Exponentiations in RSA MSc Dissertation, UMIST 1999.

[2] J.-F. Dhem, F. Koeune, P.-A. Leroux, P. Mestre, J.-J. Quisquater and J.-L. Willems. A practical
implementation of the timing attack UCL Crypto Group Technical Report Series, June 15, 1998
http://www.dice.ucl.ac.be/crypto/

[3] P. Giblin. Primes and Programming : An Introduction to Number Theory with Computing Cam-
bridge University Press, 1993.

[4] P. Kocher Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems
Crypto’ 96, volume 1109 of Lecture Notes in Computer Science, pp. 104-113, Springer-Verlag, 1996
http://www.cryptography.com/

[5] P. Kocher, J. Jaffe and B. Jun Introduction to Differential Power Analysis and Related Attacks
http://www.cryptography.com/

[6] P. Kocher, J. Jaffe, Benjamin Jun Differential Power Analysis in Advances in Cryptology : Pro-
ceedings of CRYPTO ’99, Springer-Verlag, Berlin 1999.

[7] AXK. Lenstra. LIP, Anonymous ftp /usr/spool/ftp/pub/lenstra on flash.bellcore.com

[8] A.J. Menezes, P.C. van Oorschot and S.A. Vanstone. Handbook of Applied Cryptology CRC
Press, Boca Raton, 1996.

