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Introduction

At a recent research meeting1, discussion of measurements of internal pore heights
from cross sections of paper by K. Niskanen and H. Löytty and of surface topography
by M. Lorusso highlighted the need for an appropriate reference model. This short
communication fills a gap in the existing theory, which dates back to the work of
Corte and Kallmes [1, 2]; it provides the analytic distribution for internal and surface
pore heights in a layered random fibre network. Such a network is known to resemble
laboratory made paper from dilute suspensions of fibres.

The importance of the development lies in the influence of surface pore structure on
printing and fluid entry and the influence of internal void structure on compressibility
and hence also printing and converting of paper. We have already a good understanding
of the statistical features of horizontal pore structure in paper; now we have a model
for the vertical component in random paper. It turns out that the standard deviation
of pore height is approximately proportional to the mean pore height.

Pore height statistics

Two types of pores arise in a random network consisting of n similar layers:

Surface pores: vertical sequence of r voids followed by a non-void

Interior pores: non-void then vertical sequence of r voids, then non-void.

Evidently the distribution of such heights r, measured in units of one fibre thickness
(here equivalent to the thickness of one layer) is controlled by the binomial distribution
with event probability p, the solid fraction in each layer.

1EC COST E11, Geometrical characterisation of paper, Brussels, 12, 13 November 1998
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2 Pore height distributions
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Figure 1: Probability distribution of internal pore heights (left columns) and surface
pore heights (right columns) in units of one fibre thickness for a random sample of
n = 20 layers, each layer having mean solid fraction p = 0.3. Both have mean pore
height about 1.8 units and standard deviation about 2.2 units.

Recall that the relationship between the mean coverage c in a random fibre layer and
the mean solid fraction p in the layer is

(1− p) = e−c. (1)

So, for example, in a layer with p = 0.3, the mean coverage is c ≈ 0.36, only 5%
of the area has more than 1 fibre coverage and less than 0.6% has more than 2 fibre
coverage. The net grammage in a stack of n = 20 such layers is typically in the range
40− 50 gm−2; it is given by np times the mean fibre grammage. Analytic expressions
for the two distributions of pore height are given in the Appendix. It turns out that
both distributions are similar, as may be seen for the examples shown in Figure 1, for
a network of n = 20 layers with each layer having mean solid fraction p = 0.3. The
mean pore height is about 1.8 fibre thicknesses, with standard deviation about 2.2 The
two main variables are the number of layers n, and the solid fraction p in a layer; their
effects on the statistics of the distribution of pore heights are illustrated in Figure 2
and Figure 3, respectively. These results seem in agreement with experimental data
from cross sections; this and extension of the analysis to non-random networks will be
pursued elsewhere.

The interesting point is that for pore height, like many other geometrical features of
random networks, here again we find that the standard deviation is for many practical
purposes proportional to the mean. For horizontal pore sizes, such a proportionality
persists even for non-random, flocculated structures; the derivation of the pore height
distribution in non-random networks is an open problem for the future.
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Figure 2: Effect of number of layers n. Plot of standard deviation σr against mean r̄
for pore heights in units of one fibre thickness for random samples of up to n = 20
layers, each layer having mean solid fraction p = 0.3. The standard deviation is for
many practical purposes proportional to the mean. Both internal and surface pores have
similar plots; mean and standard deviation increase monotonically with increasing n.
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Figure 3: Effect of layer solid fraction p. Plot of standard deviation σr against mean r̄
for pore heights in units of one fibre thickness for random samples of 20 layers, each
layer having mean solid fraction 0.1 ≤ p ≤ 0.9. The standard deviation is for many
practical purposes proportional to the mean. Both internal and surface pores have
similar plots; mean and standard deviation decrease monotonically with increasing p.
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Appendix

Consider a stack of n Poisson layers, each with solid fraction p. The probability dis-
tribution function PSurf (r, p, n) for surface pore height r and its mean r̄Surf are
obtained from the binomial distribution and given after some algebraic simplification
by

PSurf (r, p, n) = (p(1− p)r(n− r − 1)) /

(
n−1∑
r=0

p(1− p)r(n− r − 1)

)
, n = 0, 1, . . . , n− 1(2)

=
(1− p)r p2 (n− r − 1)

−1 + (1− p)n + n p
(3)

r̄Surf = n− 2 +
2

p
− (n− 1) n p

−1 + (1− p)n + n p
. (4)

The corresponding probability distribution function PInt(r, p, n) for internal pore
height r and its mean r̄Int are obtained similarly and reduce to the following

PInt(r, p, n) =
(
p2(1− p)r(n− r − 2)

)
/
n−2∑
r=0

(p2(1− p)r(n− r − 2)), n = 0, 1, . . . , n− 2(5)

=
(1− p)1+r p2 (n− r − 2)

−1 + (1− p)n + p (n+ p− n p)
(6)

r̄Int =
((1− p)n (2 + (−3 + n) p)) + (−1 + p)2 (−2 + (−1 + n) p)

p (−1 + (1− p)n + p (n+ p− n p))
. (7)

The standard deviations σSurf and σInt also are known analytically and available from
the author, but their expressions are somewhat cumbersome so they are omitted here.
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