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Abstract

Using results for the distribution of perimeters of random poly-
gons arising from random lines in a plane, we obtain new analytic
approximations to the distributions of areas and local line densi-
ties for random polygons and compute various limiting properties
of random polygons. Using simulation, we show that the lengths of
adjacent sides of polygons generated by random line processes in the
plane are correlated with ρ = 0.616± 0.001.
Keywords: Poisson line process, Random polygons, line density,
polygon area distribution, limiting distributions, approximations.
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1 Introduction

Random lines with uniformly distributed orientation and each passing through
a point distributed according to a Poisson point process in a plane, partition
the space with random polygons and much is known about such processes.
There are analytic results of Miles [1, 2] and Tanner [3] (cf. also Stoyan et
al. [4]) for infinite random lines in a plane, for example:

• Expected number of sides per polygon n̄ = 4

• Variance of the number of sides per polygon var(n) = π2+24
2

• Perimeter P of polygons with n sides has a χ2 distribution with
2(n− 2) degrees of freedom and probability density function q given
by

q(P, n) =
Pn−3 e−P/2

2n−2 Γ(n− 2)
, n = 3, 4, . . . (1.1)
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Figure 1: Probability density functions for perimeter P of random polygons with
n = 3, 4, 5, 6 sides; P plotted in units of mean polygon side length.

where P is given as a multiple of the mean polygon side length and
the n = 3 case for perimeter of triangles coincides with an exponential
distribution. See Figure 1 for some cases of small n.

• Probability of triangles p3 = (2− π2

6 ) ≈ 0.355

• Probability of quadrilaterals p4 = 1
3− 7π2

36 +4
∫ π/2

0
x2 cot x dx ≈ 0.381

Stoyan et al. [4] p325 collect further results from Monte Carlo methods:

p5 ≈ 0.192, p6 ≈ 0.059, p7 ≈ 0.013, p8 ≈ 0.002 (1.2)

and mention the empirical approximation obtained by Crain and Miles for
the distribution of the number of sides per random polygon

pn ≈ e−1

(n− 3)!
. (1.3)

We can obtain estimates for the mean and variance of side lengths of
the random polygons with n sides:

x̄(n) =
∫ ∞

0

P

n
q(P, n) dP =

2 (n− 2)
n

similarly var(x)n =
4 (n− 2)

n2
.

(1.4)
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though this estimate of var(x)n will, of course, underestimate the true
variance.

The limiting arithmetic average (unweighted by n) over all n is given
by

x̄ = lim
k→∞

k∑
n=3

x̄(n)
k − 2

= 2 = lim
n→∞

x̄(n). (1.5)

Another overall average for mean polygonal side length that may be of more
practical value is that obtained via weighting by the number fractions pn

of polygons with n sides, given approximately by the expression (1.3). We
estimate this by obtaining first an approximate probability density function
for the perimeter of all polygons:

q(P ) =
∞∑

n=3

pn q(P, n) =
1
2

e−(1+ P
2 ) I0(

√
2 P ) (1.6)

where I0(ζ) is the zeroth order modified Bessel function of the first kind.
The probability density function given by Equation (1.6) has mean, P = 4
and variance var(P ) = 12 and is plotted in Figure 2. Recall that the
probability density functions we have used give P as a multiple of the mean
polygon side length and the expected number of sides per polygon is four. It
follows that weighted mean polygon side length is P̄

4 = 1, as expected. We
may state therefore that the overall arithmetic mean polygon side length
is twice the weighted mean polygon side length.

Simulations of random lines by Piekaar and Clarenburg [5] found that
around 39 % of the polygons were triangles, around 35 % had four sides and
the remaining 25 % or so had 5 or more sides in the random isotropic case.
Such practical realizations of isotropic random lines tend to yield random
polygons that appear ‘roundish’, nearly regular, rather than irregular in
shape and this is reported also by Corte and Lloyd [6] for fibre networks
made using laboratory and commercial filtration processes. See Miles [7]
and Kovalenko [8] for proofs that this regularity is in fact a limiting property
for random polygons as A, P or n become large.

Note that, for a planar process of lines resulting in polygon side lengths
following a Gaussian distribution, the perimeter distributions for n-sided
polygons would be χ2 with n − 1 degrees of freedom—so for triangles it
gives the same as Miles [1], but the Gaussian case differs increasingly for
larger n.

The analytic distribution function for the area A of the random poly-
gons remains an unsolved analytic problem; however, approximating anal-
yses have been given by Corte and Lloyd [6] for the random line case. This
was extended by Dodson and Sampson [9, 10] to non-random stochastic line
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Figure 2: Probability density function approximation for perimeter P of all polygons
averaged over n ≥ 3; P plotted in units of mean polygon side length.

and fibre processes using for the polygon edge distribution a gamma distri-
bution and then that the radii of circles with equivalent area to polygons
was closely approximated by a gamma distribution also. Similar findings
have been reported by Castro and Ostoja-Starjewski [11] from Monte-Carlo
analyses. Dodson and Sampson [12, 13] discussed also porosity statistics
and transfer properties in stochastic fibre networks. In section 2.1 below
we provide a new analytic approximation to the distribution of areas of
random polygons.

The spatial covariance function for local fibre density in random pro-
cesses of straight finite fibres was derived and used by Dodson [14] to obtain
analytically the variance of local density as a function of the zone size for
arbitrary schemes of complete sampling with rectangular zones.

These geometric features of random line and fibre processes are of im-
portance to physicists studying stochastic fibrous materials at a range of
scales. For example, Berhan et al. [15, 16, 17] have recently considered
the influences of the structure of random networks of nanotubes on their
mechanical properties. Similarly, the pore size of electrospun nano-fibrous
networks for application as nano-filters has been recently shown to depend
strongly on the diameter of the electrospun fibres [18] as predicted by the-
ory [19]. Note also that the fracture of random fibre networks is of interest
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to the study of paper, glass fibre mats and randomly oriented short fibre
composites [20, 21]. There is a significant body of work discussing fracture
of such materials; see, e.g. [22] for a review summarising results in the
context of paper, and [23] for more general discussion of fracture processes
including the scaling of fracture path roughness in random fibre networks.
A specific outstanding problem is that it is not known whether the distri-
bution of polygons through which a fracture path passes in a random fibre
network is representative of the network as a whole or is drawn selectively
from larger or smaller polygons in the global distribution. Here we provide
approximations for the distribution of local line density which we expect
to be relevant to such studies of fracture paths. We provide also numerical
estimates of the correlation between adjacent polygon sides which may be
useful in analytic approaches to estimate the global and local deformation
of networks under an imposed load.

2 Approximating distributions for local den-
sity and void areas

Here we make a simplifying approximation in our analysis, in order to
make approximating estimates for probability density functions of local
line density and area for random polygons. The assumption is that the
polygons are all sufficiently close to being regular for us to be able to use
the standard formulae for areas of regular polygons. As we have mentioned,
this is a limiting property for large n and we will see in Section 3 that
significant correlation exists between the lengths of adjacent sides of the
polygons arising from random line processes in the plane.

In order to test the validity of the assumption of regularity of polygons,
it is helpful to consider the probability density of radii of circles inscribed
within these polygons. Without this assumption, Miles [1] provides the
analytic result that this probability density is exponential for infinite lines
of arbitrary width and arbitrary distributions of width. For a regular n-
sided polygon, the radius of the inscribed circle is,

r =
P

2 n
cot

(π

n

)
. (2.7)

From Equation (1.1), the probability density of inscribed circle radii for an
n-sided regular polygon is,

s(r, n) =
(n r tan(π/n))n−2

e−n r tan(π/n)

r Γ(n− 2)
. (2.8)

It follows that the probability density of inscribed radii of all regular poly-

5



gons is approximated by

s(r) =
∞∑

n=3

pn s(r, n) . (2.9)

We have been unable to obtain a closed form of the sum given in Equa-
tion (2.9), though, numerically, we find that the sum to n = 8 accounts for
more than 99.9 % of the distribution. This distribution has mean, r̄ = 0.506
and coefficient of variation, cv(r) = 0.950, close to the unit coefficient of
variation of the exponential distribution provided by Miles. The probabil-
ity density for pore radii as given by Equation (2.9) summed to n = 8 is
plotted in Figure 3 along with that for the exponential distribution with
the same mean. The similarity between the two probability densities is
immediately evident. It is worth bearing in mind that inscribed circles
will contact every side of a regular polygon but for the irregular polygons
considered by Miles [1] these will, in general, be tangential to 3 sides only.
Nevertheless, the analysis suggests that the assumption of regularity pro-
vides a reasonable basis for our subsequent analysis.

2.1 Void area statistics

For an n-sided regular polygon with perimeter P, we can compute the area

A =
P 2

4 n
cot

π

n
, n = 3, 4, 5 . . . . (2.10)

Then using (1.1) the probability density function for area A of our random
n-sided polygons is approximated by

p(A,n) =
e
−

√
A n tan(π

n ) (
A n tan

(
π
n

))n−2
2

2 A Γ(n− 2)
, n = 3, 4, . . . (2.11)

See Figure 4 for some cases of small n and note that we have the following
limiting properties:

lim
n→∞

p(A,n) = 0 but lim
n→∞

∫ ∞

0

p(A,n) dA = 1 and lim
n→∞

Ā(n) = ∞.(2.12)

The mean area of an n-sided polygon is

Ā(n) =
(n− 2) (n− 1)

n
cot

(π

n

)
. (2.13)

Again, we have been unable to obtain an analytic form of the weighted
probability density function for polygon areas, as given by

q(A) =
∞∑

n=3

pn p(A,n) (2.14)
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Figure 3: Approximate probability density function for radii of circles inscribed in
regular polygons as given by Equation (2.9) compared with probability density for
exponential distribution with the same mean. r is plotted in units of mean polygon
side length.
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Figure 4: Probability density function approximations for area A of random polygons
with n = 3, 4, 5, 6 sides. A is plotted in units of the mean polygon side length
squared.
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Figure 5: Probability density function approximation for area A of all polygons aver-
aged over n ≥ 3. A is plotted in units of the mean polygon side length squared.

though the weighted probability density function determined for terms up
to n = 20 should be sufficient for practical applications and is shown in
Figure 5; numerical analysis of this probability density function yields Ā =
1.84 and var(A) = 12.42.

2.2 Local density statistics

The local density of line length per unit area for a regular n-sided polygon
is b = P/A and so using (1.1), b in our random polygons has probability
density function f approximated by

f(b, n) =

(
2 n tan(π/n)

b

)n−2

e−
2 n tan(π/n)

b

bΓ(n− 2)
, n = 3, 4, . . . (2.15)

See Figure 6 for some cases of small n.
We note that the mean line density b̄(3) for regular triangles is undefined

because the integral is divergent, but the means exist for polygons of n ≥ 4
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Figure 6: Probability density function approximations for local line density b of ran-
dom polygons with n = 3, 4, 5, 6 sides. b is plotted in units of reciprocal mean
polygon side length.

sides:

b̄(n) =
2 n tan(π/n)

(n− 3)
(2.16)

and lim
n→∞

b̄(n) = 0 . (2.17)

The divergence of the integral for the case when n = 3 is a consequence of
the unboundedness of the expectation of the reciprocal of an exponentially
distributed variable.

The weighted probability density function for local line density is given
by

g(b) =
∞∑

n=3

pn f(b, n) . (2.18)

Again, this requires numerical evaluation and we consider that terms up to
n = 20 suffice for practical purposes; the probability density function given
by such an evaluation is shown in Figure 7. Just as the mean line density
b̄(3) for regular triangles is undefined because the integral is divergent, so
is the weighted average line density. We can estimate this however for
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Figure 7: Probability density function approximation for local line density b of all
polygons averaged over n ≥ 3. b is plotted in units of reciprocal mean polygon side
length.

polygons of four or more sides using

b̄n≥4 =
∑∞

n=4 pn b̄(n)∑∞
n=4 pn

(2.19)

which yields b̄n≥4 ≈ 6.

3 Product models, crossing clustering and cor-
relation

Practical applications have exploited the fact that the expected number of
sides per random polygon is four. They work by substituting for the poly-
gon area distribution a direct product of two exponential [6] or gamma [9]
distributions, or by using a bivariate gamma [10]. These models have been
and continue to be successful in predicting properties of real and simulated
networks [6, 10, 12, 13, 25, 24].

An interesting question [10] concerns the evident fact that, even for
random isotropic homogeneous line processes, denser regions tend to have
shorter polygon sides than less dense regions. A product model for polygon
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areas might represent this feature through correlation of the constituent
variables, such as a bivariate exponential or bivariate gamma distribution.

Consider first the case of a random isotropic homogeneous line process
in a plane. We represent the distribution of random polygon areas A by a
rectangular grid with rectangle sides the random variables x, y drawn from
an exponential distribution with unit mean with the ordering x ≤ y; the
area of each rectangular polygon is A = x y. Thus, since the underlying
process is isotropic and homogeneous, we have the random variables related
by

x̄ = (1− ε) and ȳ = (1 + ε) (3.20)
x̄ + ȳ = 2 so x̄ȳ = (1− ε2). (3.21)

For random isotropy we have correlation coefficient

ρ =
cov(x, y)√

var(x) var(y)
(3.22)

=
Ā− x̄ȳ√

var(x) var(y)
(3.23)

=
Ā− (1− ε2)√
var(x) var(y)

. (3.24)

It remains to estimate ρ, on the assumption that x, y come from a common
exponential distribution with unit mean. We start with pairs of randomly
chosen numbers from the exponential distribution; hence the mean value
of the product of these pairs is 1. Then convert each pair {xi, yi} into an
ordered pair (xi, yi) such that xi ≤ yi and create now two distributions,
one for the first member x and one for the second member y. Intuitively, we
take any yi < xi from the source distribution of y and add them to source
distribution of x; also we take any xi > yi from the source distribution
of x and add these to the source distribution of y. Note that the mean
product of pairs xy = 1 unaltered; however, the ordered pairs are no longer
independent. This yields the probability density function for x

g≤(x) =
1
2

e−2 x so x̄ =
1
2

and var(x) =
1
4
. (3.25)

Also, the probability density function for y is

g≥(y) = 2 e−2 y(1− e−y) so ȳ =
3
2

and var(y) =
5
4
. (3.26)

It follows that
ρ =

x y − x̄ ȳ√
var(x) var(y)

=
1√
5
. (3.27)
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Figure 8: Graphical representation of random line processes in the plane.

The estimate that we have obtained for the correlation between ordered
pairs of x and y takes no account of clustering of crossings and arises only
from sorting pairs such that xi < yi. We expect clustering to increase the
correlation between adjacent pairs of inter-crossing distances.

We have written Mathematica code to extract pairs of x and y repre-
senting the lengths of the adjacent sides of polygons arising from a Poisson
line process in a unit square. The code works by solving the equations
of lines drawn at random within the unit square for the coordinates of all
crossings that occur between them. Each of the coordinates is identified by
the lines that generate it, allowing the coordinates of the adjacent crossings
on these lines to be extracted; from these the lengths of adjacent pairs of
polygon sides are calculated. Graphical representations of these random
line networks are shown in Figure 8. Note that we consider only pairs of
polygon sides bounded entirely by the unit square. Where either of a pair
of adjacent polygon sides cross the sides of the unit square, these are dis-
counted from the analysis. In Figure 8 these polygon sides are represented
by broken lines. Importantly, discarding these polygon sides from our anal-
ysis had no significant influence on the distribution of polygon sides, which
was exponential, as expected. Given this, we can be confident that any
difference between the correlation computed from our simulation and that
calculated for independent polygon sides is an intrinsic feature of the net-
work structure and not an artefact arising from the way the problem has
been encoded within the software.

In Figure 9, the correlation between adjacent polygon side lengths is
plotted against the intensity of the line process generating them. The pro-
cess intensity is calculated as the total length of lines in the unit square.
The error bars on ρ represent 95 % confidence intervals calculated from 10
different random seed numbers. Networks with an increasing number of
lines per unit area were generated each random seed, permitting the cor-
relation to be tracked as a function of process intensity; this process is
illustrated in the inset figure. For processes of 1000 lines in the unit square
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Figure 9: Correlation plotted against process intensity. Data represent the means
of 10 simulations; error bars represent 95 % confidence intervals. Inset diagram
shows data for the 10 simulations.

14



we calculate the correlation between more than a million pairs of adjacent
polygon sides and observe a correlation of ρ = 0.616 ± 0.001; this is rep-
resented by the broken horizontal line in Figure 9. We observe the same
correlation in networks of 500 lines with a confidence interval varying only
in the fourth decimal place. Note also that whereas the correlation for
individual line processes may exceed this value at low process intensities,
the mean correlation observed over our 10 cases was always less than 0.616
for process intensities less than 500. It is interesting that for process of
20 or more lines per unit area, the correlation is always greater than that
calculated for independent and ordered pairs, i.e. ρ = 1√

5
≈ 0.447 and

increases rapidly towards its stable value with increasing intensity.
Examples of scatter plots showing the distribution of sorted x and y

pairs are shown in Figure 10. The figures on the left show pairs (x, y)
drawn independently from exponential distributions with unit mean and
sorted such that xi ≤ yi; those on the right show pairs (x, y) obtained from
our analysis of random polygons arising from a planar line process of 500
lines in the unit square. A three-dimensional histogram approximating
the joint probability density of x, y is shown beneath each scatter plot
wherein the heights of the bars are scaled such that the volume under the
histogram sums to 1. For the independent sorted pairs we have x̄ = 0.501,
ȳ = 1.503, var(x) = 0.251, var(y) = 1.250, ρ = 0.445 in agreement with
Equations (3.25) to (3.27). For the sides of random polygons we have x̄ =
0.608, ȳ = 1.392, var(x) = 0.413, var(y) = 1.399, ρ = 0.615.
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Figure 10: Scatter plots and 3D histograms for sorted x, y pairs. Left: independent
and sorted x, y; right: sorted x, y representing adjacent sides of random polygons.
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