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Abstract

We provide explicit information geometric tubular neighbourhoods containing all bivariate
distributions sufficiently close to the cases of independent Poisson or Gaussian processes. This
is achieved via affine immersions of the 4-manifold of Freund bivariate distributions and of the
5-manifold of bivariate Gaussians. We provide also the a-geometry for both manifolds. The
Central Limit Theorem makes our neighbourhoods of independence limiting cases for a wide
range of bivariate distributions; the topological character of the results makes them stable under
small perturbations, which is important for applications in models of stochastic processes.
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1 Introduction

In general, a probability density function depends on a set of parameters, 01,62,...,0" and we say
that we have an n-dimensional family of probability density functions. Let © be the parameter space
of an n-dimensional smooth such family defined on some fixed event space €2

{po|0 € O} with /pgzl for all § € ©.
Q

Then, the derivatives of the log-likelihood function, | = log py, yield a matrix with entries

1) ,,_/ al ol __/ 921
. 9ij = QPG 90t 907 - QPO 901907 |’

for coordinates (%) about § € © C R™.

This gives rise to a positive definite matrix, so inducing a Riemannian metric g, the Fisher metric on
© using for coordinates the parameters (#); this metric is called the information metric for the family
of probability density functions—the second equality here is subject to certain regularity conditions.
Amari [I] and Amari and Nagaoka [2] provide modern accounts of the differential geometry that arises
from the Fisher information metric.

An n-dimensional set of probability density functions S = {pg|# € © C R"} for random variable
x € Q C R is said to be an exponential family [2] when the density functions can be expressed in
terms of functions {C, FY, ..., F,,} on R and a function ¢ on O as:

(1.2) po(z) = lCETEO" Fi@)—e0))

Then we say that (6%) are its natural coordinates, and ¢ is its potential function. From the normal-
ization condition [, pg(x) dz = 1 we obtain:

(1.3) o(0) = 1og/ AC@HSL 0 F@)) gy
Q
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With 0; = we use the log-likelihood function I(¢, x) = log(pe(x)) to obtain

il(0,x) = Fi(x)— 0;0(0)

del )

and
0;051(0,x) = —0;050(0).

The Fisher information metric g on the n-dimensional space of parameters © C R"”, equivalently on
the set S = {pp|6 € © C R}, has coordinates:

(1.4) [9i5] = — /Q[aiajl(ﬁ,x)} po(x) dz = 0;0;0(0) = ¢i;(0) -
Then, (S5, ¢) is a Riemannian n-manifold with Levi-Civita connection given by:

Ffj(a) = " (9igin + 0;gin — Ongis)

(7=
DN =

=
Il
—_

1
" 0;0;0n0(0 Z 3 ©™(0) ijn(0)
h=1

I
Nk
l\')\»—\

>
Il
—

where [p"*(0)] represents the inverse to [pnk(z)].
There is a family of symmetric connections which includes the Levi-Civita case and has significance

in mathematical statistics. Consider for a € R the function I‘EJ“;C which maps each point 8 € © to the

following value:
Q

l1-« 1-a
(1.5) = —5 0:0;0kp(0) = 5 Pijk(0) .

i (6)

ij,k

So we have an affine connection V(%) on the statistical manifold (S, g) defined by

9(V§o,0,) = T,

where ¢ is the Fisher information metric. We call this V(®) the a-connection and it is clearly a
symmetric connection and defines an a-curvature. We have also

V@ = (1-a)v©® + aV(l)
14+«
— v 4 v( 1
2 2

For a submanifold M C S, the a-connection on M is simply the restriction with respect to g of the
a-connection on S. Note that the O-connection is the Riemannian or Levi-Civita connection with
respect to the Fisher metric and its uniqueness implies that an a-connection is a metric connection if
and only if a = 0.

In [4] we proved that every neighbourhood of an exponential distribution contains a neighbourhood of
gamma distributions, in the subspace topology of R3 using an information geometric affine immersion
of Dodson and Matsuzoe [10]. As part of a study of the information geometry and topology of near
random and bivariate stochastic processes cf. [3, [, [7, [ @) 6], we calculated the geometry of the
Riemannian 4-manifold of Freund bivariate (mixture) exponential density functions. This family is
important because exponential distributions represent intervals between events for Poisson processes
and Freund distributions can model bivariate processes with positive and negative covariance. We
derive the induced a-geometry, i.e., the a-Ricci curvature, the a-scalar curvature etc. The case a« =0
recovers the Levi-Civita connection and it has a positive constant 0-scalar curvature.

Sato et al [I6] provided the bivariate Gaussian distributions as a Riemannian 5-manifold; it has a
negative constant O-scalar curvature and if the covariance is zero, the space becomes an FEinstein
space. We calculate the a-geometry. In each of the Freund and bivariate Gaussian cases we provide
explicitly an affine immersion and examples of neighbourhoods of independence.

Thus, including the results we reported in [4], we now have explicit representations in R? of information
geometric tubular neighbourhoods containing by continuity each of the following:
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e All distributions sufficiently close to a Poisson distribution

All distributions sufficiently close to a uniform distribution

All bivariate distributions sufficiently close to the independent bivariate Poisson distribution

e All bivariate distributions sufficiently close to the independent bivariate Gaussian distribution.

These results have wide application in the theory of stochastic processes because Poisson distributions
model the random state, of independent haphazard events, and provide good limiting models for some
binomial distributions. Moreover, the Central Limit Theorem makes our neighbourhoods of Gaussian
independence limiting cases for a wide range of bivariate distributions other than Gaussian.

There are practical applications because the topological character of the results makes them stable

under small perturbations. The authors used Mathematica to perform analytic calculations and the
interactive notebooks are available for others to use [5].

2 Freund bivariate exponential 4-manifold F

Freund [I1] introduced a bivariate exponential mixture distribution arising from the following relia-
bility considerations. Suppose that an instrument has two components A and B with lifetimes X and
Y respectively having probability density functions (when both components are in operation)

fx(@) =a1e7%; fy(y) = ase™2Y for (a1, > 052,y > 0).

Then X and Y are dependent in that a failure of either component changes the parameter of the life
distribution of the other component. Thus when A fails, the parameter for Y becomes (2; when B
fails, the parameter for X becomes (3. There is no other dependence. Hence the joint probability
density function of X and Y is:

B a1ﬁ2efﬁzy*(a1+a2*ﬁ2)r forO<z <y
(2.6) flz,y) = { aofre~Pre—(atoa =0y for() <y < x

where «;, 3; >0 (i=1,2).
The marginal probability density function of X > 0 is (provided that «y + as # 1)

_ a2 —Biz o — —(a1+az)z
(27) fx(x) = (al—i—ag—ﬁl) Bie + (a1+a2_ﬁ1> (041 +a2)e + .

The marginal probability density function of Y > 0 is ( provided that ay + as # 52)

_ s —Ba2y ag — Bo —(a1+az)y
(2.8) frly) = <a1+a2_62> Bae + <a1+a2_62> (a1 +ag)e .
We can see that the marginal functions are not exponential but rather mixtures of exponential densi-
ties if a;; > (3;; otherwise, they are weighted averages. This family should be termed bivariate mixture
exponential densities rather than simply bivariate exponential densities. The marginal density func-
tions fx(z) and fy (y) are exponential distributions only in the special case o; = 3; (i = 1,2).
The covariance and correlation coefficient of X and Y are given by:

PP
B B2 (a1 + a2)2 ’
B1 B2 — a1z
2 2 2 2
\/042 + 201 s + G \/Oél + 201 a0 + B2

(2.9) Cow(X)Y) =

(2.10) p(X,Y) =

Note that —% < p(X,Y) < 1. The correlation coefficient p(X,Y) — 1 when a1, f2 — oo, and
p(X,)Y) — —% when oy = ag and 1, 2 — 0. In many applications, 8; > a; (i = 1,2) ( ie.,
lifetime tends to be shorter when the other component is out of action); in such cases the correlation

is positive.
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2.1 Freund Fisher metric

The Freund family F in coordinates (a1, aa, 81, 32) has Fisher information metric components

L 0 0 0
0 L o0 o
1 —_
2.11 ] = as L
( ) [9 J] a1 + as 0 0 57122 0
0 0 0 %
with inverse
a; 0 0 0
- 0 as 0 0
(2.12) [97] = (o1 + a2) 0 & o
g
ﬁ2
0 &

2.2 Natural coordinates and potential function

It was noted by Leurgans, Tsai, and Crowley [14] that the family of Freund distributions forms an
exponential family, with natural parameters

(213) (91,92,93,94) = (Ot1 + ﬂ1,0&2,10g <a1 52> ,52)
az 1

and potential function

0,050,

> = —log(az 1)

So by solving the equations

o B2
asg B

01 = a1+ B1, 02 = ag, 93log( >,94ﬁ2~7

we obtain that:
B 0164
te efs 0y + 04

0,0,

@ els 92—|-1947

e, B = ag =03, B2 =0y,

so (2.6)) can be written in term of the natural coordinate system as:

01(—x)+03+04(xz—y)+log( 0192 04 )
e

363+, for 0 <z <
(215) f(l', y) 01 (y)+02 (y—=z)+log( 01 02 64 ) Y
e %3 093+64 for0<y<ux

The Fisher metric with respect to the natural coordinates (6;) (2.13)) is given by

[ o 0 0 0
o fal26%0:464) 3 0, e
62(;7(9) . 022 (60: 92+94)2 (693(; 92+94)2 (693992+94)2
8069 - O e’3 04 e’3 05604 _ e’3 0
v (663 92+94)2 (693 92+94)2 (693 92+94)2 ’
0 _ e’ _ e?3 0, 1 1
| (€3 02+64) (%3 02+604)"  6a®  (e%3 02404)"
r 1
—_— 0 0 0
(a1+51)°
o 0 ' B1(2a1+p1) oy B1 o oy B1
(2 16) _ az? (a1+61)2 as (a1+681)? asz (a1481)? B2
. — 0 a1 D1 @1 01 _ a1 P
asz (a1481)? (a1+81)? (a1+81)? B2
0 _ a1 B _ a1 1 a1 (1 +2pB1)
L as (a1+B1)? B2 (a1+81)% B2 (a1+p1)? B2
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2.3 Freund a-geometry

We report the analytic expressions for the a-connections and the a-curvature objects with respect
to coordinates (o, ag, 31, 2); this is simpler than using the natural coordinates (2.13)). Detailed
expressions are given are given in Appendix [A] for the components of the a-connection components

T3).

(

Proposition 2.1 The nonzero independent components Ri?,zl of the a-curvature tensor are given by:

R§§;2 :%’
ROy = pbe
Ry =
e
(2.17) R, :%. =

Contracting Rl(]o.‘,gl with g% we obtain the components R;z) of the a-Ricci tensor.

Proposition 2.2 The a-Ricci tensor R(®) = [Rgz)] is given by:

—1
( 2) 27 (z?l+a2) 2(a1+a2) 0 0
11—« = L 0
2.18 R —pey - L") 2oiton)  Zoa(aites)
(2.18) = (a1 + az) 0 0 257 OE)
0 0 0 3%

The a-eigenvalues and the a-eigenvectors of the a-Ricci tensor are given by:

0
1 1

219) (1-a?) | P e

a2
2 (a1 +az) 12
a

1
2 (a1+az) B2°

S
% 1 0
9.2 a 0
(2.20) 0 0 1 0
0 00 1

Proposition 2.3 The manifold F has constant a-scalar curvature

3 (1 —042)

(@) —
(2.21) R 5



6 Neighbourhoods of independence in manifolds of bivariate Gaussian and Freund distributions

Proposition 2.4 The a-sectional curvatures o' (X, ) (\, u = 1,2,3,4) are given by:

1-— a2) Qa2
(@)(1.3) = (04)14:(7
R e
0 (1,2) = 0,
1-— a2) a1
(@)(2,3) = @24:(7
2*(2,3) 0(2,4) T or t o)
(@) 1-— Qz
(2.22) 03,4 = ——.0
Proposition 2.5 The a-mean curvatures o' (\) (A = 1,2,3,4) are given by:
l-a%)a
@1y = (7
(1) ACETRE
1-a%) o
(@) (9) = (
e ( ) 6 (Oél -+ OZQ)
1—a?
(2.23) 0@ = o) =10

2.4 Dual coordinates

Since F' is an exponential family, a mixture coordinate system is given by the potential function (2.14]),
that is,

dp(6) 1 1
T e T e T at A
o= O _ b B
905 0y (% 0y + 0,) az (a1 +61)’
_ 0p(0) 04 _ o
BT 0, T P10, ar+t B
dp(0) 1 1 a1
(2.24) T 00, T 0 0,10, (autB) B

Next (01,02,03,04) is a l-affine coordinate system, (11, 72,13,74) is a (—1)-affine coordinate system,
and they are dual with respect to the Fisher information metric. The coordinates (n;) (2.24) have a
potential function given by:

016504 efs 05 05 (e3] ay B
2.25 A=1 —-2=1 1 - 2.
(2.25) o8 <603 02 + 94) * ef3 0y + 0,4 og(azf) + a1 + B o8 oz 1

The coordinates (6;) and (7;) form a dual coordinate system. Therefore the Freund manifold has
dually orthogonal foliations (See Section 3.7 in [I]) for example.

Take

(m1,02,03,04) = 62,05,04)

1
(_Ea

as a coordinate system for F'; then the Freund distributions take the form:

_0204€%  Bale-w)tar g0 < g <
p Y
. o 05 e93+6 n
(2.26) f(@,y3m,02,03,04) = 7( "o, 944) TR

(62 % +02)m for0<y <z

where m; <0 and §; >0 (i =2,3,4).
The Fisher metric is
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(02 ef3 +04)2

~— 0 0 0
o] 1 0 04 (2 925293 +04) 0, ¢% _ obs
i - - B
” ((92 efs + 94)2 0 04 efs 004 efs —6s efs
02 e%3404)°
0 — 603 _92 603 ‘( 2 6942 4) —1
(a1 + B 0 0 0
1 0 B1(2a1+p61) a1 B _ a1 f
(2:27) = —— 0 B o &
(o1 + B1) o arfh S
0 _a B o (i42p1)
as fBa B2 B2

We remark that (6;) is a geodesic coordinate system of V1, and (1;) is a geodesic coordinate system
of V(=1),

2.5 Submanifolds of F

We consider four submanifolds F; (i = 1,2, 3,4) of the 4-manifold F' of Freund bivariate exponential
densities f(x,y; a1, ag, 1, 02) , which includes the case of independent random variables. It
includes also the special case of an Absolutely Continuous Bivariate Exponential Distribution called
ACBED (or ACBVE) by Block and Basu (cf. Hutchinson and Lai [I2]). We use the coordinate
system (aq, s, 31, B2) for the submanifolds F; (i # 4), and the coordinate system (A1, A12, A2) for
ACBED of the Block and Basu case.

2.5.1 Independence submanifold: F; C F: (1 = a1, b2 = as

The densities are of form:

(2.28) f(z,y; 00, 00) = fi(w;aq) fa(y; az2)

where the f; are the univariate exponential densities with parameters «; > 0(i = 1,2). This is
the case for the independence of X and Y, so Fj is the direct product of the Riemannian spaces
{filzsar) = are™ %, a1 > 0} and {f2(y; a2) = —aze™*2Y, ay > 0}

Proposition 2.6 The metric tensor [g;;] is as follows:

SR

(2.29) [9:5] = [

0
1
o3
Proposition 2.7 The a-curvature tensor, a-Ricci tensor, and a-scalar curvature of Fy are zero. U

2.5.2 Submanifold: I, C F: a1 = a3 , B1 = 32

The probability density functions are of form:

. _ a1 6_[311}_(20‘1_61)z forO< z < Y
(2'30) f(x7y,a1,ﬁ1) = { a1 e~ Pre—(2o1—PF1)y for0 <y <z
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with parameters aq, 31 > 0. The covariance, correlation coefficient and marginal density functions, of
X and Y are given by:

1 1 1
4 2
(2:32) pXY) = 1- ﬁ
_ ai —Bix a1 — 61 —2a1z
(233) fx(ZU) = (20{1—51> 516 +<2a1—ﬁ1) (20[1)6 ,ZL’ZO,
- [e5] —B3 a1 — ﬂl —2 a1
(2.34) ) = (5ot ) merrs (52 Gaper 2o

We see that p(X,Y) = 0 if and only if a3 = 1. Also, Fy forms an exponential family, with natural
parameters (a1, 1) and potential function ¢ = —log(a; f1).

Proposition 2.8 The submanifold F5 is an isometric isomorph of the manifold Fi.

Proof
Since ¢ = —log(ay B1) is a potential function, the Fisher metric is the Hessian of ¢, that is,
(2.35) ) = [t ] = [ Y ]
00,00 0 7
where (61,02) = (a1, 1) . O

2.5.3 Submanifold: F3 C F: 81 = s = a1 + s
The probability density functions are of form:

oy (a1 +ag) ety for 0 <z <y
as (a1 + ag) e~ (te2)s for 0 <y <z

(2.36) P,y ns ) — {

with parameters a1, as > 0. The covariance, correlation coefficient and marginal functions, of X and
Y are given by:

a1 + ag az + az?

(2.37) Cou(X,)Y) = 1
(o1 + az)
2 2
(2.38) pX.Y) = SRt R ,
\/2 (a1 + @2)? — a2 V2 a2 + dagas + as?
(2.39) fx(@) = (a2(a1+ag)z+ag) e” (@ Fe)e 4 >0
(2.40) fr@y) = (o1 (a1+a2)y+az) e @tV 4 >0

Note that the correlation coefficient is positive.

Proposition 2.9 The metric tensor on F3 is

as+2 oy . 1 .
(241) lgis] = | oo b O
(a1+a2)? as (a1 +asz)?

Proposition 2.10 The a-curvature tensor, a-Ricci curvature, and a-scalar curvature of Fs are zero.
O
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2.5.4 Submanifold: F, C F, ACBED of Block and Basu

The probability density functions are

M A1z (>‘2 /\12)y 0
e or < x < y
2.42 f Z, ;)\ 7/\ 27/\2 = A +)\2 r—
( ) ( Y; A1, A1 ) { WQ (A1+A12) A2y f()r()<y<$

where the parameters Aq, A\12, Ao are positive, and A = Ay + Ao + Aqs.

This distribution was derived originally by omitting the singular part of the Marshall and Olkin
distribution (cf. [13], page [139]); Block and Basu called it the ACBED to emphasize that these are
the absolutely continuous bivariate exponential distributions. Alternatively, these distributions can
be obtained from , by taking

A1 A2
= )\ + A S——
o ! ()\1 +/\2)
B = A+,
A2 A2
= )\ + A S
(o3 2 O+ )
B2 = A2+ Ao

By substitution we obtain the covariance, correlation coefficient and marginal probability density
functions:

(M + )\2)2 (A1 4 A12) (A2 + Ai2) — A2 A Ao
A2 (A1 +22)% (1 + Aiz) (A2 4 Aa)
(A4 A2)% (A1 + An2) Q2 + Ana) = A2 A1 o

(2.43) Cow(X,Y) =

(2.44) p(X,Y) = ,
\/Hfﬂ,j# (()\1 A2+ A2)? + A2 (N + 2>\¢)>
(2.45) fx(@) = ( ~A2 ) e e 4 ( A ) (A1 + Ajg) e-Prthi)e 0>
A1+ Ao AL+ A2
(2.46) frly) = < A2 ) Ae M4 ( A ) (A2 + Arp) e Rethi2v g >
AL+ A2 A1+ A2

The correlation coefficient is positive, and the marginal density functions are a mixture of two expo-
nentials.

Proposition 2.11 The metric tensor [g;;] using the coordinate system (A1, A1z, A2) is

[9i5] =
1 A t+Ao
Az (’\1+(>\1+>\12)2) 4L A2 + L -1 41
atre)? A e AR TN Carg)? T2
2 1
(247) DV + 1 (*1-%—%12)2Jr(*z-*—*m)2 T 1 A1 4 1 Al
(A1+A2) A1+A12)2 A2 A1+Az A2 (A1+A2) A2+A12)? A2
Ay (L 21t
-1 _ + 1 A1 =+ 1 PR T % a0)? + 1
CYESVERLEPY (A1r2) (2+A12)T T A2 (A+22)? A%

The Christoffel symbols, curvature tensor, Ricci tensor, scalar curvature, sectional curvatures and the
mean curvatures were computed [3] but these are not listed here because the expressions are somewhat
cumbersome.

In the case when A1 = Ao, this family of distributions becomes

2A+A12) Aitdi2) —Az—(A1+A12)y for 0
. N e orU<xz <y
(2.48) f(@,y: 0, A2) = { (2 >\1+>\12% Aithi2) =X y—(Mi+die) @
2

forO0<y<z

which is an exponential family with natural parameters (61, 62) = (A1, A12) and potential function

©(0) =log(2) — log(A1 + A12) — log(2 A1 + A12), note that from equations (2.45] [2.46) this family of
bivariate distributions has two equal marginal density functions.
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Figure 1: Affine immersion in natural coordinates (ay, 1) as a surface in R® for the Freund sub-
manifold Fy. The curve ay = 31 in the surface consists of all bivariate distributions having common
exponential marginals and zero covariance; its tubular neighbourhoods contain by continuity all im-
mersions of bivariate exponential processes sufficiently close to the case of independence.

So it is easy to derive the a-geometry; the metric tensor is:

1 4 1 2
2.49 ] = 82('0 — (AM+A12)? + (2 A1 +A12)2 (A1+A12)2 + (2A1+X12)?
( . ) [glj] 60 80 1 + 2 1 + 1
10U A1+x12)? T (2X+212)7 (M+A2)? T (2X1+A12)?

In this case, the a-curvature tensor, a-Ricci curvature, and a-scalar curvature are zero.

Additionally, since (A1, A12) is a 1-affine coordinate system, a (-1)-affine coordinate system is

1 1 1 1 )
M+A2 A2 M+ A2 2X0 4+ A2

(n1,m2) = (
with potential function

A= —2—1og(2) + log(2 A1 + A12) +log(A1 + A12).

2.6 Affine immersion and neighbourhoods of independence

An important practical application of the Freund submanifold F5 is the representation of a bivariate
stochastic process common marginal exponentials. The next results are important because it provides
topological neighbourhoods of that subspace W in Fy consisting of the bivariate processes that have
zero covariance: we obtain neighbourhoods of independence for random (ie exponentially distributed)
processes.

Proposition 2.12 Let F be the Freund 4-manifold with the Fisher metric g and the exponential
connection V). Denote by (0;) the natural coordinate system . Then F can be realized in R®
by the graph of a potential function, the affine immersion f:

(2.50) fiF—R:[6;] — [90%9)]’
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where p(0) is the potential function p(6) = — log(%) = —log(as fB1). O

The case of Freund distributions with a; = ap and (3 = (s is represented by the surface:

RT x RT —= R®: (o, 41) — (a1, B1,9).

where ¢ = —log(ay f1).
The submanifold W C F» consisting of the independent case («; = (31) is represented by the curve:

(0,00) = R : (o) = (a1, 1, —2log avy) .

This is illustrated in Figure [I] which shows an affine embedding of F» as a surface in R3, and an
R3-tubular neighbourhood of W, the curve a; = (3; in the surface. This curve represents all bivariate
distributions having common exponential marginals and zero covariance; by continuity its tubular
neighourhoods contain all small enough departures from independence.

Proposition 2.13 In the affine embedding of the Freund submanifold Fy in R?, a tubular neighbour-
hood of the curve ay = (1 will contain all affine immersions of bivariate exponential distributions
sufficiently close to the case of independence. O

3 Bivariate Gaussian 5-manifold N

The bivariate Gaussian distribution has the form:

(351)  flzy) = ! ¢ Tores o) () 2 ) () o (re))

27T\/0‘1 g2 —0‘122

defined on —oco < z,y < oo with parameters (ui, po, 01, 012, 02); where —oco < pi,pus < 00,
0 < 01,09 < 00 and o5 is the covariance of X and Y.

The marginal density functions of X and Y are univariate Gaussian:

1 _(e—pp)?
(352) fX(xvulvo-l) = € 21 )
2T o
1 _ (y—nug)?
(3.53) fy(y,p2,00) = e e
27 o9
The correlation coefficient is:
012

p(X,Y) =

\/01 09

Since 0192 < 01 09 then —1 < p(X,Y) < 1; so we do not have the case when Y is a linear function of
X.

3.1 Fisher metric

The family N of bivariate Gaussian distributions with (p1, 12, 01,012, 02) as coordinate system, be-
comes a 5-manifold with Fisher information metric components

o2 __ 012
%% 0 0 0
_g12 g1
e o 0 0
92 __ 01202 Oiy
(3.54) [9i5] = 0 0 2AZ A7 2AZ )

o120 0102107, 01012

O O - 92 A2 - %2

0 0 912 __ 01012 91

2 A2 A2 2 A2
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The inverse is

g1 Jg12 0 0 0
012 g9 0 0 0
(3.55) ¢g“]=| 0 0 20% 201012 202,
0 0 20710712 0'10'2-1-0'%2 201909
0 0 20%2 2019 09 20%

where A = 0109 — 0.
See Skovgaard [I7] for the metric in the case of general multivariate Gaussians, which also form an
exponential family.

3.2 Natural coordinates and potential function

Proposition 3.1 The set of all bivariate Gaussian distributions forms an exponential family, with
natural coordinate system

(Mle—MzUlz H201 — 1012 —02 012 —01>

(3.56) (01,02,03,04,05) = A ’ A "2A7 AV 2A

and corresponding potential function

po? o1+ it oa — 21 2 012

0(0) = log(2mVA) +

2A
(357) = 10g(27T\/K) — A (922 93 _ 91 92 04 + 912 95) )
where
Ao 1
40505 — 0,
Proof
1 . . .
log f($7y) = log ( e_ﬁ(‘”(””_l“) =2 o012 (x—p1) (y—p2)+o1(y—p2) ))
ZW\/Z
_ H102 — H2012 Lo 01 — 4] 012 0y 5 012 —o1
(3.58) = A x4+ A y+2Ax + Axy+72Ay
2 2, _9
(3.59) _ <log(27r VA) + Mo o1 + i ;Z 1 2 012) .

Hence the set of all bivariate Gaussian distributions is an exponential family. The line (3.58]) implies

that (fr723fedi2 R201Ioiz 2 iz A1) is a natural coordinate system and

(1’1,.’132,.1?3,.’174,1‘5) = (F1($)7 FZ(x)a Fg(l‘), F4(£I})7F5(33)) = (xvyax27xy7y2)
is a random variable, and (3.59) implies that

po? o1 + p? oo — 2 py p2 012
2A

©(0) =log(27 VA) +

is its potential function.

We can write the potential function in terms of natural coordinates by solving the set of equations:

9 V2 —

{91 _ 02 = 2012 4 201 = 1012 —02 0, 912 05 = —5 }
2 (0102 — 0122)’ 0102 — 0122’ 2 (o102 — 0122)

2 V3 =
0102 — 012 0102 — 012

we obtain:
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0-Sectional curvature o(%)

(0)
0(1,2) 0.2¢

0.1}

Correlation p

Figure 2: The 0-sectional curvatures 0% as a function of correlation p for bivariate Gaussian manifold
N where: 00(1,3) = o©(2,5) = 00(3,4) = o©(4,5) = —1, o©(1,2) = 1, p0(1,4) = o® (2,4)
and 09 (1,5) = 0(9(2,3). Note that 09 (1,4), 09 (1,5) and 0°(3,5) have limiting value —% as

2
p— 1.

{ 00— 020s  Wa05-0000 25 6 o }
M T 40,05 2 T 02— 4050, T 07— 40505 02 40505 — 0,277 0,5 — 4050
Then
1
wzlog(QW\/Z)—A (02203—9192044-91295), where A:(Tl 0'2—0'122 = 72.|:|
10505 — 0,

3.3 «a-geometry

Since the analytic expressions for the a-connections and the a-curvature objects are very large
in the natural coordinate system, we report these components in terms of the coordinate system
(1, p2, 01,012, 02). Details are given in Appendix [B| for the components of the a-connection from
equation . Skovgaard [I7] has given the formula for the O-connection for multivariate Gaussians.
These results were extended by Mitchell [15] who gave the metric and a-connections for multivariate
elliptic distributions.

Proposition 3.2 The components of the a-Ricci tensor are given by the symmetric matriz R(®) =

(a)y.
[Ri;"]:
g2 _g12
B 24 0 0 0
—gi12 91
2A 2A 02 0 3 20
a) 2 g2 __ 02012 012" —01 02
(360) R( ) = (Oz - 1) 0 0 2 A2 A2 R 4 A2
0 0 __ 02012 301021012 __ 01012
2 2A2 2
0 0 3012°—01 02 __ 01012 g1
4 A2 2 2 A2
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0-Mean curvature o(®(\)

-0. 15/ Q(O)(l) = @(O)(Q)

-0.2¢

00 (3) = 0(5)

ool
No
an

i Correlation p

-1 0.5
-0. 35/

Figure 3: The 0-mean curvatures 0 (\) as a function of correlation p for bivariate Gaussian manifold

N where; o9 (1) = 0 (2) = -3 0(3) = 00(5) = -1, and oW (4) —» —L1 as p — *1, and

Q(O)(4) — —% as p — 0.

Proposition 3.3 The bivariate Gaussian manifold N has a constant a-scalar curvature R :
9 (a2 — 1)
2

This recovers the known result for the 0-scalar curvature R

(3.61) R@

0) 0

[SI[e)

Hence N is +1-flat, as in fact also are the multivariate Gaussians, by Theorems 2.5, 3.5 in Amari and
Nagaoki [2].

Proposition 3.4 The a-sectional curvatures of N can be written as a function of correlation p(X,Y")
only, as follows:

[ 0 1 1 143 p° 22
4 2 4 (1+p2) 2
_1 0 02 143 p? 1
4 : 2 4 (1+p2?) 2
(O‘) — 2 _ 1 P 1 P

(3.62) 0 = (1) 1 & 0 z = | O

143 p? 143 p? 1 0 1
T(11p2) 4(1+p%) 2 2
02 1 o’ 1 0

L 2 2 1+p2 2 4

Figure @ shows a plot of the 0-sectional curvatures o9 as a function of correlation p for bivariate
Gaussian manifold N. O

Proposition 3.5 The a-mean curvatures o (X, p) (A =1,2,3,4,5) are given by:

a?—1
o) = ()= T,
a?—1
0@ = 06 =,
1) (3 2 2—1) 3+ p?
(3.63) g(a)(4) _ (a ) ( 91 02—20‘12 ) — (a ) ( 2“1‘[))
8 (0102 + 012%) 8 (1+p?)

Figure @ shows a plot of the 0-mean curvatures g(o)()\) as a function of correlation p for bivariate
Gaussian manifold N.
O
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3.4 Dual coordinates

Since N is an exponential family, a mixture coordinate system is given by the potential function (3.59)),
that is,

8790_ 29195—9294

m = 801_7942—49305 = M1,
- 87@ - 2 92 93 — 91 94 o
2 90, 0, 4050, ¥
o 02°0.° +204 (=261 02+ 04) 05 +4 (617 —203) 05 )
= g T 5 3 =p"+o1,
3 (04> — 465 65)
A 205° 0304 + 04° + 2 (01° — 203) 0405 — 0102 (04> + 40305)
T W:_ 5 5 = pipe + 012,
4 (64 — 40305)
8@ 4922 (932 — 4601 050504 + (912 +2 93) 942 — 8932 05 9
BT e 2 5 = 2" + 02,
5 (647 — 405 05)
(3.64)

We have (01, 62,03,04,05) as a 1-affine coordinate system, so (91,72, 73,74, 75) is a (—1)-affine coordi-
nate system, and they are dual with respect to the Fisher information metric. The coordinates (7;)
have a potential function given by:

(3.65) A= (1 +log(2 VZ)) .

The coordinates (6;) and (7;) form a dual coordinate system. Therefore the bivariate Gaussian man-
ifold has dually orthogonal foliations (See Section 3.7 in [I]) for example.

Take

—09 012 —0q )

b 70 79 ’0 = b) b) ) b
(112, 63, 04, 05) (ul p2 2(0109 — 0122) 0109 — 0122 2 (0102 — 0122)

as a coordinate system for IV; then the bivariate Gaussian distributions take the form:

(366) (51,72, 5,0, 05) = 5 /40y — 6 P (=00 (2 ()05 0
7T

and the Fisher metric is

g1 g12 0 0 0
g12 g9 0 0 0
0"2 g2 O ag 2
(3.67) 0 0 Zx  -m:ge g
0 0 __ 02012 o102+012° o101
A2 A2 2
0 0 o12° __ 01012 o1
2 A2 A2 2 A2

We remark that (6;) is a geodesic coordinate system of V1) and () is a geodesic coordinate system
of V=1,

3.5 Bivariate Gaussian submanifolds
3.5.1 Independence submanifold: Ny C N: 0150 =0

The distributions are of form:

(3-68) f($7y§M1,M2,0170'2) = fX(%Ml,Ul)-fY(ZJ,Mm@)
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This is the case for statistical independence of X and Y, so the space N; is the direct product of two
Riemannian spaces

{fX(x7p“17O'1)7 JGRS R; o1 € RJr} and {fY(yHuan'Q)a H2 € Rv o2 € R+}

We report expressions for the metric, the a-connections and the a-curvature objects using the natural
coordinate system

1 1
(0159270?”94):(&’&’_ y T )
o1 09 201 209
1
and potential function p=log(2mVA)—A (922 05 + 6012 94) A= 100,
304

Proposition 3.6 The metric tensor is:

o1 0 201 0
L 0 g2 0 2202
(3.69) sl =1 2por 0 200 22t o) 0 0
0 2 113 o 0 209 (2p2% + 02)

Proposition 3.7 By direct calculation we have the a-curvature tensor given by
(3.70) RS, =—(a®=1) 01, RS, = —(a®—1) 03®

while the other independent components are zero.

By contraction we obtain the a- Ricci tensor:

% 0 M1 01 0

0 2 0 M2 09
3.71 R = (a? -1 2 ,
(8.71) (a ) 101 0 o1 (2m?+01) 0

0 U2 T2 0 g9 (2#22 +O’2)

The a-eigenvalues of the a-Ricci tensor are given by:

T + o1 + T \/16M14+ (1 —201)2 +8m? (1+201)+ U%

Gt mPo -G \/16ﬂ14+ (1-201)" +8m2 (1+201) — 2

g1

G+ oy + G \/16M24 +(1-202)" + 82 (1 +202) + 2

g

G+ pa? oy — % <\/16u24+(1—2az)2+8u22 (1+202) — 2)

o2
The a-scalar curvature of N1 is constant:
(3.72) R =2(a® - 1)

The a-sectional curvatures:

(2 ) 0 01 0
-1 0 0 0 1
(@) - \@
(3.73) ¢ 2 1000

01 00
The a-mean curvatures:

o —1

(374) o) = V()=o) = o)) =
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Proposition 3.8 The submanifold Ny is an Finstein space.

Proof
By comparison of the metric tensor (3.69)) with the Ricci tensor (3.71), we see that

RO ,
RY = ——gu» k= dim(N).

So the submanifold N; with statistically independent random variables is an Einstein space. O

3.5.2 Identical marginal Gaussian submanifold: No C N: 0y =0y =0 and pu; = us = p

The distributions are of form:

1 -t (o(z—p)? =20 12 (w—p) (y—p)+o (y—p)*)
(3.75)  f(z,y;p1,0,012) = == (77127
202 — 0192

The marginal functions are fx = fy = N(u,0), with correlation coeflicient p(X,Y) = 22

We report the expressions for the metric, the a-connections and the a-curvature objects using the
natural coordinate system

H —0 012
01,02,03) =
( 172 3) <0+012’2(0270'122),(0270'122)

and the potential function

6,2

YT 50, + 6,

1
+log(2) — 5 log(4 05 — 63%).

Proposition 3.9 The metric tensor [g;;] is as follows:

2(0’—|—0’12) 4u (0’—|—0’12) 2#(0’4—0’12)
dp (o+012) 4 (O’ (2u2 +U) +2u2 019 —1—0122) 4 (u20+ (u2 +0) 012)
2u (0 + 012) 4(u20+(u2+0) 012) o (2u2+0)+2,u2012+0122
(3.76) 0

Proposition 3.10 By direct calculation we have the a-curvature tensor of No

0 —2(0 +012)® —(0+012)°
R, = (2?2 =1) | 2(0 +012)° 0 0
(0 + 012)° 0 0
0 — (o + 012)3 _(02012)3
(3.77) RS, = (0® = 1) | (0 +013)° 0 0
(o+012)® 0 0

2

while the other independent components are zero.

By contraction we obtain:
The a- Ricci tensor:

(0 +012) 2p (0 +012) (o + o12)
o+o 24640
(3.78) (a2 _ 1) 2p (o0 +o012) (0+012) (4,u2 +0+012) (o+ 12)(4; +otoi2) ’
I (O’ + 0-12) (o+4012) (4:2+a+a12) (o+012) (452+0+0_12)

The a-eigenvalues of the a-Ricci tensor are given by:
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0
10(04012)?

2

(3.79) (a - 1) 4(14502)+5—/4000% +(4—50) > +4002 (44+50)+5012 (—8+40 2 +100+5 12)
10(0’+O’12)2

4(1+5,u,2)+5+\/400 ut+(4—5 0)2+40p,2 (44-50)+5012(—8+40 p2+100+5 012)

The a-scalar curvature:
(3.80) R = (a? - 1)

The a-sectional curvatures:

0 (04012)2 (o+012)*
) , 4 (02+0122) 4 (02+0122)
(3.81) o = (a® —1) | fiTel, 0 0
(0'+0'12)2 0 0

4 (0'2-‘1-0'122)

The a-mean curvatures:

(1) = —(a®-1),

a?—1) (0 +012) (4p® + 0 +012)
8 (0 (2p2+0) +2p% 012 + 0122)

(3.82) Q(a)(g) — Q(a)(3):(

3.5.3 Central mean submanifold: N3 C N: pu; = pus; =0

The distributions are of form:

1 _— 2_2 +o1y?
(3.83) f(x, Y; 01,09, 0.12) — e 2(01 09—0122) (02:1: 012X YT0o1Y )
27‘(’\/0’1 g9 — 0'122
The marginal functions are fx(z,0,01) and fy (y, 0, 02), with correlation coefficient p(X,Y") = \/% .
We report the metric, and the a-curvature objects using the natural coordinate system
02 012 01
01,05,03) = (— , _
(61,02,05) = ( 2 (0102 —0122) 0102 — 01227 2(01 02 — 012?)
and the potential function
1 2
p =log(2m) — 3 log(1/461 03 —047).
Proposition 3.11 The metric tensor is as follows:
20,2 201012 20122
l9i;] = 201012 0102+ 0122 202012 |,
20152 209012 2052
O

Proposition 3.12 By direct calculation we have the nonzero independent components of the a-
curvature tensor of N3

0 —0'12A —20’1 O'lgA
Rgl)cl = (042 - 1) o2 A 0 —0109 A
201 0'12A g1 JQA 0
0 —20’1 O‘12A —40’122A
Rggl)cl = (a2 - 1) 201012 A 0 —209 O'12A

4(7122A 20’2(712A O
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0 —0109 A —205012A

(3.84) RS = (a®=1)| o102A 0 —0,2 A
2 09 012 A 0'22 A 0

By contraction we obtain:
The a- Ricci tensor:

o1? o1012 2012% — 0102
(385) R(a) = (CM2 - 1) 01012 g1 02 092 012 s

201922 — 0102 020712 022

The a-eigenvalues of the a-Ricci tensor are given by:

0

2.1
% 0'12 + 0109 +O’22 - \/(0’12 — 0102 +0’22)2 +4 (0'12 —40’1 g9 +O’22) 0'122 + 160124

0124+ 0100+ 032 + \/(012 — 0109 + 022)2 +4 (012 — 40109 4 022) 0122 + 160122

The a-scalar curvature:
(3.86) R =2 (a®—1)

The a-sectional curvatures:

N

0 1 p
« 2 1 2 1+1p2
(3.87) d = (@-1| 3 0 3
P 1 0
1+p2 2
The a-mean curvatures:
1
61 = dUB) =7 (0*-1)

(aQ—l) o102 (a2 —1)
2 (0102+0122) ) (1+p2)'

(o-1)

For N3 the a-mean curvatures have limiting value ~——= as p? — 1.

(3.88) 0 (2) =

3.6 Affine immersion

Proposition 3.13 Let N be the bivariate Gaussian manifold with the Fisher metric g and the expo-
nential connection VY. Denote by (6;) the natural coordinate system , Then N can be realized
in R® by the graph of a potential function, via the affine immersion {f,&}:

0,
3.89 10— R%: [0 N
(3.89) f [6:] Law)]
where @(0) is the potential function p(6) =log(27mVvA) — A (022 O3 — 01020, + 6,° 05) - O

3.7 Neighbourhoods of independence

The case of bivariate Gaussian distributions with zero means (u; = p2 = 0) and common standard
deviation o, = 0y = o is represented by the surface in R? :
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Figure 4: Affine immersion in natural coordinates (01,02) = (7%, %2) as a surface in R® for the
bivariate Gaussian distributions with zero means and common standard deviation o. The tubular
neighbourhood surrounds the curve g12 = 0 in the surface; this curve represents bivariate distribu-
tions having common Gaussian marginals and zero covariance; its tubular neighourhoods contain by

continuity all sufficient small departures from independence.

Figure 5: Continuous image of the affine immersion in Figure IZl as a surface in R3 using standard
coordinates for the bivariate Gaussian distributions with zero means and common standard deviation
o; the tubular neighbourhood surrounds the curve o192 = 0 in the surface.
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R™ xR — R3: (01,605) — (61,02,0(0)),

where (01,0:) = (7%, %2); A = 0% — 012% and ¢(0) = log(270).
So the submanifold consisting of the independent case with zero means and common standard devia-
tions is represented by the curve:

(—00,0) = R® ' (6;) — (01,0, log(—47A6))
(—%) — (—%70,10g(2ﬂ'0)).

Proposition 3.14 In the affine immersion as a surface in R? for the bivariate Gaussian distribu-
tions with zero means and common standard deviation o, tubular neighbourhoods of the curve of zero
covariance will contain by continuity all immersions of bivariate Gaussian processes sufficiently close
to the independence case. O

Corollary 3.1 Via the Central Limit Theorem, the tubular neighbourhoods of the curve of zero covari-
ance will contain all immersions of limiting bivariate processes sufficiently close to the independence
case for all processes with marginals that converge in distribution to Gaussians. d

The figures show an affine embedding of the bivariate Gaussian with zero means (3 = ps = 0)
and common standard deviation o as a surface in R3, and an R3-tubular neighbourhood of the
curve o12 = 0 in the surface. This curve represents bivariate distributions having common Gaussian
marginals and zero covariance; its tubular neighbourhoods represent departures from independence.
In Figurethis is depicted in natural coordinates (5%, %2) and in Figurethe corresponding surface
and tubular neighbourhood (not here an affine immersion, just a continuous image) is shown in the
usual (o, 012) coordinates of the bivariate Gaussian family, with zero means and common standard

deviation o.

Acknowledgment: The authors wish to thank the Libyan Ministry of Education for a scholarship
for Arwini.
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Appendix

A  Freund 4-manifold F

A.1 a-connection and a-curvature

Proposition A.1 The nonzero independent components I’

I
I,
L5
rish
I
I
I
rs)

I5is

(A.90) IS

Proposition A.2 The nonzero components I‘;(ka) of the V() _connections are given by:

a)l
F a)l
(12)

a)l
F:(>,3) =

(A.91) it =

(a
i,
2(a—1) a1 —(1+a) a
2012 (o +a2)2
1+«
207 (g + a2)2 ’
(a—1) ag

)

2 (o + 042)2 52

a—1
2as (g + a2)2 7
—(a—1) as
2 (o1 + as)’ B
(a—1) ag
(a1 +az2) B®’
—(14+a) o
2 (o1 + a)® 51
—l4+a)a+2(a—1) ay
2a9? (a1 + a2)2
(a—1) g
2 (o1 + a2)® B2
(a—1) oy
(a1 + az) B

)

14+« —-14+3a
20[1 2 (a1 + 012) ’
()3 (a)2 ()4 a—1
T =T =T =
13 12 24 2 (al —I—Oég)

@2 _ (1+a) a;az
433 - 2
2 (o1 + a2) By
(14+a) o
20&2 (Oél +042) ’
@2 _ = (14 a) ag az
Y 2
2 (011 +Cl{2) ﬂg

F(a)4 - (1 +Oé) [6%)
14 — 9 /| N\
201 (a1 + as)
1+« —14+3a
20[2 2(0[14—&2)7
a—1

L in (a1, a9, 01, 02) coordinates are

23
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B Bivariate Gaussian 5-manifold N

We use coordinates (1, o, 01, 012, 02).

B.1 «-connection and a-curvature

Proposition B.1 The functions I‘(])

k

are given by:

Neighbourhoods of independence in manifolds of bivariate Gaussian and Freund distributions

o 0 Al 1 (1+ ) 092 2(14+ «) 03012 —(1+ ) 012°
e = here A — —
[ w’l] {AT 0] where 2A2 [(1 +a)oros —(1+a) (01 o9 + 0122) (1+ ) 01012
[ (a)}: 0 B_ Wherer 1 (1+Oé) 092012 —(1+a) (010’2+0’122) (1+OZ) 0'1012
15,2 BT 0_ 2A2 (1+a) 0'122 2(1—|—a) 01012 (1+a) 0'1
Celed hmes 0 0o
((’—é)g; g12 —((!2—2)2012 0 ] 0 ] 0 ]
e B
0 0 (14a) 022012 —(1+a) o2 (010243 012%)  (1+a) 012 (01 0240127)
A3 2 A3 ) 2 A3
0 0 (1+O() o2 0'122 (1-‘1—01) 012 (01 o2+012 ) (1+O¢) o1 0'122
L —2 A3 2 A3 —2A3 _
(a—1)gs0 (a=1)(o10240127) ]
(a+1)2A?12 —2(a+1)A2 0 0 0
(a—l)(0102+0122> (a—1)o1012 0 0 0
. ) PES Y. (a+1)A2 . .
« o2(0102 o1 J12( 010 o1
[Lijal = (a+1) 0 0 92 g1 2 72—2:-); 2) 2 22: )
0 0 02(0102+30122) 012(30102+0122) 01(0102+30122)
—2 A3 A3 —2 A3
0 0 012(0102+U12 01(0102-1‘30122) 01201
L 2 A3 9 A3 T A3 .
M —( —1)0122 (a—1)o1012 T
( a12)A2 O‘( 2A12; ) O 0 O
o— 01012 —(\a—1)o1
2 A2 2A2 0 , . 0 ) 0 ,
S 0 Otopape’  Dreulomree]) g
0 0 (1+a)012(0102+0’122) —(1+a)o1 (0102+30122) (1+a)o1%012
2A3 2A3 A3
0 0 (1+a)010'122 (1+o¢)012012 (1+a)013
L 2A3 A3 —2A3 i
O
We have an affine connection V(®) defined by:
(VY8 01) =T,
So by solving the equations
§;"3€_Zg Y (k=1,2,3,4,5).

we obtain the components of V(®):
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Proposition B.2 The components I‘;Z‘)i of the V() _connections are given by:

[ 0 0 —09 012 0 i
0 0 012 —01 0
rt = it = % —0y o1z 0O 0 0
g12 —01 0 0 0
0 0 0 0 0]
[ O 0 0 —09 J12 i
0 0 0 o012 —o01
1
D@2 = (2] = (Ch) ;AO‘) 0 0 0 0 0
—02 g12 0 0 0
L g12 —01 0 0 0 i
A(l—a) 0 0 0 0
s 1 0 0 0 0 0
s = [y ]:K 0 0 —(14a)os (1+a)ox O
0 0 14+a)os —(1+a)oy 0
0 0 0 0 0
0 Al —a) 0 0 0
Ll aa-a 0 0 0 0
Pt = [Pl = A 0 0 0 —(1+a)oy (1+a)on
0 0 —14+a)oy (14+a)o —(14a)o;
0 0 (I+a)oe —(1+a) o 0
0 0 0 0 0
, |0 Aaa-a) 0 0 0
(B.92)  I@®=[r{"% = N 0 0 0 0 0o
0 0 0 —(1+a)oz (1+a)onz
0 0 0 (I1+a)oiz —(1+a)o;

B.1.1 o-curvature

Proposition B.3 The components RZ(.;‘,zl of the a-curvature tensor are given by:

0 A 0 0 0
A 0 0 0 0
o (a? —1)
[R§2I)cl] = TiAz 0 0 0 —092 o012
0 0 g2 0 —01
0 0 —012 g1 0
2 3 2 2
@,;_(=-1)T0 C _ | —o2 209° 012 —02012
[R13kl] - 4A3 —CT 0 Where C o 022 g12 —02 (0'1 g9 + 0122) 0102012

2 2 2 2
@, _@=1)T 0 D _ [ 202%012 =03 (0102 +3012%) 012 (0102 4 012?)
[Risil = AA3 where D = —2020122 012 (30102 + 012%)  —01 (0102 + 0127)

7ET 0 0'123 —20’1 0'122 0'120'12

[R(a) | = (a2 - 1) |: 0 E:| where B — [—0'2 o122 o192 (0'1 () +0’122) —01 0'122:|
02 012 —205 012> o12°
—02012° 012 (01 02 +0122) —01 0127

a H
[RSgh] = TIAT |:_HT 0} where H = {



26 Neighbourhoods of independence in manifolds of bivariate Gaussian and Freund distributions

-1l o J —05 (0102 +012?) © (300 +012%)  —201012°
R _ (a here J — 2 (0102 12 12 102 12 1012
[ 24kl] 4A3 —JT 0 where 012 (0'10’2 + 0’122) —01 (0‘10’2 + 30‘122) 20‘120'12

’-1 _ 2 2
[R;(;I)cl] = -1 { 0 ]ﬂ where K = {01 02012 —01 (0102 +012°) 0y 0—%2]

4A3 | -KT —01 0122 2012 012 —01
0 —09A 0 0 0
A 0 0 0 0
o 062 -1 02
[Ri(i4l)cl] = % 0 0 02 —05 02012
0 0 g5 0 —01 09
0 O —092 012 0102 0
0 012A 0 0 0
A 0 0 0 0
o a2 -1 012
[Rf(%l)cl] = ( IAS ) 0 0 0 oy012  —0%
0 0 —02012 0 01012
0 0 0'%2 —01 012 0
0 —01A 0 0 0
2o | s o 0 0 0
[Ré(lgl)cl} _ IAS ) 0 0 0 —0103 01012
0 0 g1 02 0 —0’%
0 O —01 012 O’% O
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