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Abstract

Differential Power Analysis (DPA) methods and Statistical Zero-Knowledge (SZK) proofs de-
pend on discrimination between noisy samples drawn from pairs of closely similar distributions. In
some cases the distributions resemble truncated Gaussians; sometimes one distribution is uniform.
A log-gamma family of probability density functions provides a 2-dimensional metric space of dis-
tributions with compact support on [0, 1], ranging from the uniform distribution to symmetric
unimodular distributions of arbitrarily small variance. Illustrative calculations are provided.
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1 Introduction

In a recent review, Kocher et al. [6] show the effectiveness of Differential Power Analysis in breaking
encryption procedures using correlations between power consumption and data bit values during
processing, claiming that most smart cards reveal their DES keys using fewer than 15 power traces.
Chari et al. [2] provided a probabilistic encoding (secret sharing) scheme for effectively secure compu-
tation. They obtained lower bounds on the number of power traces needed to distinguish distributions
statistically, under certain assumptions about Gaussian noise functions. DPA attacks depend on the
assumption that power consumption in a given clock cycle will have a distribution depending on the
initial state; the attacker needs to distinguish between different ‘nearby’ distributions in the presence
of noise. Zero-Knowledge proofs allow verification of secret-based actions without revealing the secrets.
Goldreich et al. [5] discussed the class of promise problems in which interaction may give additional
information in the context of Statistical Zero-Knowlege. They invoked two types of difference between
distributions: the ‘statistical difference’ and the ‘entropy difference’ of two random variables. In this
context, typically, one of the distributions is the uniform distribution.
Thus, in the contexts of DPA and SZK tests, it is necessary to compare two nearby distributions on
bounded domains. In this article we describe the following result and discuss applications.

Proposition 1.1 The family of probability density functions for random variable N ∈ [0, 1] given by

g(N,µ, β) =
1
N

1− βµ (βµ )β (log 1
N )β−1

Γ(β)
for µ > 0 and β > 0 (1)

determines a metric space of distributions with the following properties
• it contains the uniform distribution
• it contains approximations to truncated Gaussian distributions
• the difference structure is given by the information-theoretic metric
• as a Riemannian 2-manifold it is an isometric isomorph of a the manifold of gamma distributions.
∗Poster presentation, Eurocrypt 2000, Bruges, 14-19 May 2000
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Figure 1: The log-gamma family of densities with central mean < N >= 1
2 as a surface and as a

contour plot for β ≥ 1.

Examples are provided of possible applications in the above two contexts, with some illustrative
calculations and graphs. These preliminary results may be useful for comparison with existing methods
in testing encryption devices for security.

2 Proof of Proposition 1.1

2.1 Log-gamma PDFs

By integration, it is easily checked that the family given by equation (1) consists of probability density
functions for the random variable N ∈ [0, 1]; some with central mean are shown in Figure 1. The
limiting densities are given by

lim
β→1+

g(N,µ, β) = g(N,µ, 1) =
1
µ

(
1
N

)1− 1
µ

(2)

lim
µ→1

g(N,µ, 1) = g(N, 1, 1) = 1 . (3)

The mean, < N >, standard deviation σN , and coefficient of variation cvN , of N are given by

< N > =
(

β

β + µ

)β
(4)

σN =

√(
β

β + 2µ

)β
−
(

β

β + µ

)2 β

(5)

cvN =
σN

< N >
=

√(
β

β + 2µ

)β (
β + µ

β

)2 β

− 1. (6)

The mean is plotted in Figure 2 and the coefficient of variation is plotted in Figure 3. We can obtain
the family of densities having central mean in [0, 1], by solving < N >= 1

2 , which corresponds to the
locus µ = β(21/β − 1); some of these are shown in Figure 1 and Figure 4. Evidently, the distributions
with central mean and large β provide approximations to Gaussian distributions truncated on [0, 1].
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Figure 2: Mean value < N >=
(

β
β+µ

)β
on the left as a surface with a horizontal section at the central

value, and on the right as a contour plot.
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< N >= 1
2 , and on the right as a contour plot.
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Figure 4: Examples from the log-gamma family of probability densities with central mean < N >= 1
2 .

Left: β = 1, 1.2, 1.4, 1.6, 1.8. Right: β = 4, 6, 8, 10.

2.2 Information metric structure

For the log-gamma densities, the Fisher information matrix determines a Riemannian information
metric [1] on the parameter space S = {(µ, β) ∈ (0,∞)× [1,∞)}. Its arc length function is given by

ds2
S =

∑
ij

gij dx
idxj =

β

µ2
dµ2 +

(
ψ′(β)− 1

β

)
dβ2, (7)

where ψ(β) = Γ′(β)
Γ(β) is the logarithmic derivative of the gamma function, evaluated at β.

In fact, (1) arises from the gamma family

f(x, µ, β) =
xβ−1 (βµ )β

Γ(β)
e−

x β
µ (8)

for the non-negative random variable x = log 1
N . It is known that the gamma family (8) has also the

information metric (7) (cf [7]) so the identity map on the space of coordinates (µ, β) is an isometry of
Riemannian manifolds. Observe that for this underlying gamma family (8), the entropy is

Sf (µ, β) = −
∫ ∞

0

log(f(x;µ, β) f(x;µ, β) dx (9)

= β + (1− β)
Γ′(β)
Γ(β)

+ log
µΓ(β)
β

(10)

and the maximum entropy occurs at β = 1, and then Sf (µ, 1) = 1 + logµ.
Locally, minimal paths joining nearby pairs of points in S are given by the autoparallel curves or
geodesics [4] defined by (7). The arc length function determines a metric space structure on any
Riemannian manifold by defining the metric as the infimum over arc length of curves between points.
This completes the proof. �

3 Applications

Parameter estimation from sampled data can be made using maximum likelihood methods. Suppose
that we have a set of independent observations {Ni|i = 1, 2, . . . , n}. The maximum likelihood estimates
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µ̂, β̂ of µ, β for this data set can be expressed in terms of the mean and mean logarithm of the set of
values

X = {Xi|Xi = log
1
Ni
, i = 1, 2, . . . , n}. (11)

We obtain

µ̂ = X̄ =
1
n

n∑
i=1

Xi (12)

log β̂ − Γ′(β̂)

Γ(β̂)
= logX − log X̄ (13)

where logX = 1
n

∑n
i=1 logXi.

A path through the parameter space S of log-gamma models determines a curve

c : [a, b]→ S : t 7→ (c1(t), c2(t)) (14)

with tangent vector ċ(t) = (ċ1(t), ċ2(t)) and norm ||ċ|| given via (7) by

||ċ(t)||2 =
c2(t)
c1(t)2

ċ1(t)2 +
(
ψ′(c2(t))− 1

c2(t)

)
ċ2(t)2. (15)

The information length of the curve is

Lc(a, b) =
∫ b

a

||ċ(t)|| dt. (16)

A curve corresponding to constant β has c(t) = (t, β0), so t = µ and the information length is√
β0 log b

a .

Arc length is often difficult to evaluate analytically because it contains the square root of the sum of
squares of derivatives. Accordingly, we sometimes use the ‘energy’ of the curve instead of length for
comparison between nearby curves. Energy is given by integrating the square of the norm of ċ

Ec(a, b) =
∫ b

a

||ċ(t)||2 dt. (17)

so in the case of the curve c(t) = (t, β0), the information energy is β0
b−a
ab . A curve of constant µ has

c(t) = (µ0, t) where t = β and ċ(t) = (0, 1); this has energy log a
b + ψ′(b)− ψ′(a).

Two situations may be of interest in analysing sampled distributions:

3.1 Difference between nearby unimodular distributions

Log-gamma examples of unimodular distributions resembling Gaussians are shown on the right of
Figure 4. A measure of information distance between nearby distributions is obtained from (7) for
small variations ∆µ,∆β, near (µ0, β0) ∈ S; it is approximated by

∆sS ≈

√
β0

µ2
0

∆µ2 +
(
ψ′(β0)− 1

β0

)
∆β2 . (18)

Note that, as β0 increases from 1, the factor (ψ′(β0) − 1
β0

) decreases monotonically from π2

6 − 1.
So, in the information metric, the difference ∆µ has increasing prominence over ∆β as the standard
deviation (cf. Figure 3) reduces with increasing β0, as we see in the table.
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β0 ψ′(β0)− 1
β0

cvN (β0)†

1 0.644934 0.57735
2 0.144934 0.443258
3 0.0616007 0.373322
4 0.033823 0.328638
5 0.021323 0.296931
6 0.0146563 0.27293
7 0.010688 0.253946
8 0.00813701 0.238442
9 0.0064009 0.225472

10 0.00516634 0.214411
†At < N >= 1

2

For example,some data on power measurements from a smartcard leaking information during pro-
cessing of a ‘0’ and a ‘1’, at a specific point in process time, yielded two data sets C, D. These had
maximum likelihood parameters (µC = 0.7246, βC = 1.816) and (µD = 0.3881, βD = 1.757). We see
that here the dominant parameter in the information metric is µ.

3.2 Difference from a uniform distribution

The situation near to the uniform distribution is shown on the left of Figure 4. In this case we have
(µ0, β0) = (1, 1) and for nearby distributions, (18) is approximated by

∆sS ≈

√
∆µ2 +

(
π2

6
− 1
)

∆β2 . (19)

We see from (19) that, in the information metric, ∆β is given about 80% of the weight of ∆µ, near
the uniform distribution.
The information-theoretic metric may be an improvement on the areal-difference comparator used in
some recent SZK studies [3, 5] and as an alternative in testing security of devices like smartcards.
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