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Abstract. On a smooth Banach manifold M, the equivalence classes of curves

that agree up to acceleration form the second order tangent bundle T 2M of M .

This is a vector bundle in the presence of a linear connection ∇ on M and the
corresponding local structure is heavily dependent on the choice of ∇. In this

paper we study the extent of this dependence and we prove that it is closely

related to the notions of conjugate connections and second order differentials.
In particular, the vector bundle structure on T 2M remains invariant under

conjugate connections with respect to diffeomorphisms of M .

Introduction

The fibre bundle T 2M of second order tangents to a smooth manifold M arises
in a natural way in several problems of theoretical physics and differential geometry
(cf., for instance, [5], [7]). We recall that T 2M consists of all equivalence classes
of curves in M that agree up to their acceleration. However, the definition of a
vector bundle structure on T 2M is not as straightforward as that of the first order
tangent bundle TM of M .

In [7], Dodson and Radivoiovici studied finite-dimensional second order tangent
bundles and identified conditions under which these bundles admit the structure
of a vector bundle. Dodson and Galanis ([4]) extended that study to the infinite
dimensional case, namely to tangent bundles of order two over Banach and Fréchet
manifolds (see also Section 1). In all these cases, existence of a vector bundle
structure on T 2M relies heavily on the choice of a linear connection ∇ on the base
manifold M ; the trivializations are directly defined by the Christoffel symbols of
∇. Indeed, every linear connection on M determines one isomorphism T 2M ≡
TM ⊕TM , ([7]). Then it is natural to ask how these individual isomorphisms may
be classified.

The answer to this question naturally leads us to the definition of the second
order differential T 2f of a smooth map f : M → N between two manifolds M and
N . In contrast to the case of the first order differential Tf , the linearity of T 2f
on the fibres (T 2

xf : T 2
xM → T 2

f(x)N , x ∈ M) is not always ensured. However, we
prove the following in Section 2:
A sufficient condition for linearity of T 2

xf is that the linear connections ∇M , ∇N

inducing the structures of T 2M and T 2N respectively, are f-conjugate;
that is, roughly speaking, the connections commute with the differentials of f .
Furthermore, in that case, T 2f becomes a vector bundle morphism. This conjugacy
result allows us to classify, in a sense, the structure of T 2M , thus answering the
initial question in the following manner:
The vector bundle structure of T 2M defined by ∇, remains invariant (isomorphic)
if ∇ is replaced by an f-conjugate connection, for any diffeomorphism f of M .
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Our approach covers the case of Banach manifolds and bundles, and is susceptible
to further generalization to any infinite-dimensional manifold admitting appropriate
linear connections.

1. Preliminaries

In this section we present the necessary material needed in the sequel. LetM be a
smooth manifold modeled on a Banach space E and {(Uα, φα)}α∈I a corresponding
atlas. Then, the tangent bundle TM of M admits the local coordinate system
{(π−1

M (Uα), τα)}α∈I with

τα : π−1
M (Uα) −→ φα(Uα)× E : [(c, x)] 7→ (φα(x), (φα ◦ c)′(0)),

where [(c, x)] stands for the equivalence class of a smooth curve c ofM with c(0) = x
and (φα ◦ c)′(0) = [d(φα ◦ c)(0)](1). A trivialization {(π−1

TM (π−1
M (Uα)), τ̃α)}α∈I of

T (TM) is analogously defined.
A vector bundle morphism

∇ : T (TM) −→ TM

with local expressions, relative to the above charts,

∇α := τα ◦ ∇ ◦ (τ̃α)−1 : φα(Uα)× E× E× E −→ φα(Uα)× E,
is called a linear connection of M if the maps ωα : φα(Uα)×E → L(E), defined by
the relations

∇α(y, u, v, w) = (y, w + ωα(y, u) · v), a ∈ I,
are smooth, and linear with respect to the second variable. Here L(E) stands for
the space of continuous linear maps of E.

On the other hand, a connection ∇ is completely determined by the family of
its Christoffel symbols

Γα : φα(Uα) −→ L(E,L(E,E)); α ∈ I,
defined by

Γα(y)(u) = ωα(y, u), (y, u) ∈ φα(Uα)× E.
The latter satisfy also the following compatibility condition:

Γβ(φβα(y))(Dφβα(y)(u))(Dφβα(y)(v)) + (D2φβα(y)(v))(u) =

= Dφβα(y)(Γα(y)(u)(v)),

for every (y, u, v) ∈ φα(Uα ∩Uβ)× E× E and φβα := φβ ◦ φ−1
α . For details on this,

coordinate free, approach and the relevant proofs we refer to [8], [17].
The presence of a linear connection on the manifold M is the crucial property

ensuring the existence of a vector bundle structure on the second order tangent
bundle, T 2M, which is the fibre bundle

T 2M :=
⋃

x∈M

T 2
xM.

Here T 2
xM := Cx/ ≈x denotes the tangent space of order two over x, with Cx the

set of all smooth curves in M through x, and the equivalence relation ≈x on Cx

given by

c1 ≈x c2 ⇐⇒ c1(0) = c2(0) = x, c′1(0) = c′2(0) and c′′1(0) = c′′2(0).

Denote by π2
M the natural projection:

π2
M : T 2M −→M : [(c, x)]2 7→ x,

where [(c, x)]2 is the equivalence class of the smooth curve c ∈ Cx, then the local
trivializations

Φα : (π2
M )−1(Uα) −→ Uα × E× E
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of T 2M arise from the original smooth atlas {(Uα, φα)}α∈I of M by setting:

Φα([(c, x)]2) =
(
x, (φα ◦ c)′(0), (φα ◦ c)′′(0) + Γα(φα(x))((φα ◦ c)′(0))((φα ◦ c)′(0))

)
In this way, T 2M turns out to be a vector bundle over M with fibres of type E×E

and structure group GL(E × E). If Φα,x denotes the restriction of the trivializing
map Φα on the fibre T 2

xM , then the corresponding transition functions

Tαβ : Uα ∩ Uβ −→ L(E× E,E× E) : x 7→ Φα,x ◦ Φ−1
β,x

are given by

Tαβ = (Dφαβ ◦ φβ)× (Dφαβ ◦ φβ); α, β ∈ I.

2. Second order differentials

We proceed to the definition of second order differentials. To this end, we con-
sider two smooth manifolds M and N modelled on the Banach spaces E and F, re-
spectively, with corresponding atlases A = {(Uα, φa)}α∈I and B = {(Vβ , ψβ)}β∈J .
We fix two linear connections ∇M , ∇N on M , N respectively, with Christoffel
symbols {ΓM

α }α∈I , {ΓN
β }β∈J . As explained in Section 1, the pairs (M,∇M ) and

(N,∇N ) induce the second order bundles T 2M and T 2N with vector bundle atlases
A2 = {((π2

M )−1(Uα),Φa)}α∈I and B2 = {((π2
N )−1(Vβ),Ψβ)}β∈J .

With the previous assumptions we have the following.

Definition 2.1. If g : M → N is a smooth map, we call the second order differential
of g the map

T 2g : T 2M −→ T 2N : [(c, x)]2 7→ [(g ◦ c, g(x))]2.

T 2g is a well defined map. Indeed, for two ≈x-equivalent smooth curves c1, c2
of M through x, we see that

(g ◦ c1)(0) = (g ◦ c2)(0) = g(x),

(g ◦ c1)′(0) = T0(g ◦ c1)(1) = Txg(c′1(0)) = Txg(c′2(0)) = (g ◦ c2)′(0),

(g ◦ c1)′′(0) = Tc′
1(0)

(Tc1(0)g)(c
′′
1(0)) = Tc′

2(0)
(Tc2(0)g)(c

′′
2(0)) = (g ◦ c2)′′(0).

However, though always a fibre bundle morphism, the required linearity of T 2g
on the fibres of T 2M and T 2N is not always ensured, in contrast to the case of
ordinary (first order) differentials. As a matter of fact, for every choice of vectors
(u, v) ∈ E× E, if we denote by c the smooth curve of M realizing (u, v) via the
trivialization (Uα,Φα) of T 2M , i.e.

(u, v) = Φα,x([(c, x)]2)

=
(
(φα ◦ c)′(0), (φα ◦ c)′′(0) + ΓM

α (φα(x))((φα ◦ c)′(0))((φα ◦ c)′(0))
)
,
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and setting G := ψβ ◦ g ◦ φ−1
α , then the corresponding local expression of T 2

xg :=
T 2g|T 2

x M takes the following form:

(Ψβ,g(x) ◦ T 2
xg ◦ Φ−1

a,x)(u, v)

=
(
(ψβ ◦ g ◦ c)′(0), (ψβ ◦ g ◦ c)′′(0)

+ΓN
β (ψβ(g(x)))((ψβ ◦ g ◦ c)′(0))((ψβ ◦ g ◦ c)′(0))

)
=

(
DG(φα(x))((φα ◦ c)′(0)), DG(φα(x))((φα ◦ c)′′(0))

+D2G(φα(x))((φα ◦ c)′(0), (φα ◦ c)′(0))

+ΓN
β (ψβ(g(x)))(DG(φα(x))((φα ◦ c)′(0)))(DG(φα(x))((φα ◦ c)′(0)))

)
=

(
DG(φα(x))(u), DG(φα(x))(v)−DG(φα(x))(ΓM

α (φα(x))(u)(u))

+D2G(φα(x))(u, u) + ΓN
β (ψβ(g(x)))(DG(φα(x))(u))(DG(φα(x))(u))

)
=

(
DG(φα(x))(u), DG(φα(x))(v)− (DG(φα(x))(ΓM

α (φα(x))(u)(u))

+D2G(φα(x))(u, u) + ΓN
β (G(φα(x)))(DG(φα(x))(u))(DG(φα(x))(u))

)
.

Obviously, the presence of the Christoffel symbols and the derivatives of second
order, prevents T 2

xg from being linear.
A way out of this drawback is obtained via the notion of conjugate connections.

More precisely, with the previous notations, the connections ∇M and ∇N are called
g-conjugate (or g-related) if they commute with the differentials of g, i.e.,

(1) Tg ◦ ∇M = ∇N ◦ T (Tg).

The local expression of the latter is the following:

(2)
DG(φα(x))(ΓM

α (φα(x))(u)(u)) =

ΓN
β (G(φα(x)))(DG(φα(x))(u))(DG(φα(x))(u)) +D(DG)((φα(x))(u, u),

for every (x, u) ∈ Uα × E (for details on conjugate connections see [16]).
Taking now into account (2), we may check that a sufficient condition leading to

the elimination of the non linear part of T 2
xg is the conjugation relationship of the

connections ∇M and ∇N in use. Indeed, in this case the local expression of T 2
xg

reduces to

(3) (Ψβ,g(x) ◦ T 2
xg ◦ Φ−1

a,x)(u, v) = (DG(φα(x))(u), DG(φα(x))(v)).

Therefore, one infers the following.

Proposition 2.2. The second order differential T 2g : T 2M → T 2N is linear on
the fibres if the connections ∇M and ∇N are g-conjugate.

Remark 2.3. The conjugacy relationship employed in Proposition 2.2 is a suf-
ficient, but not necessary condition ensuring the linearity of T 2g. The optimal
(necessary and sufficient) choice would be to assume that the ‘problematic’ part

E 3 u 7−→ − DG(φα(x))(ΓM
α (φα(x))(u)(u)) +D2G(φα(x))(u, u)

+ ΓN
β (G(φα(x)))(DG(φα(x))(u))(DG(φα(x))(u))) ∈ E

appearing in the local expression of T 2
xg, is a linear, not necessarily zero, map. There

is ongoing research into the possible geometric consequences of such an assumption.

Example 2.4. We give here two examples of conjugacy classes in order to clarify
somewhat our construction.

1. In the case of a constant map g, equality (2) collapses to a trivial identification
of zero quantities, since the local expression G becomes also constant. As a result,
all linear connections are conjugate through constant maps.
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2. If we consider the identity map g = idM , then equality (2) takes the form

Dφβα(φα(x))(ΓM
α (φα(x))(u)(u)) =

ΓN
β (φβ(x))(Dφβα(φα(x))(u))(Dφβα(φα(x))(u)) +D2φβα(φα(x))(u, u).

The latter is equivalent to the compatibility condition satisfied by the Christoffel
symbols of a connection on M (see Preliminary Section). Note that the previous
relation holds also for non-diagonal elements (u, v) as we easily may check due to
the bilinearity of the involved functions. As a result, any idM -conjugate connections
have to be equal and the conjugation relationship in this case reduces to equality.

Proposition 2.2 leads to the following main result.

Theorem 2.5. Let T 2M , T 2N be the second order tangent bundles defined by the
pairs (M,∇M ), (N,∇N ), and let g : M → N be a smooth map. If the connections
∇M and ∇N are g-conjugate, then the second order differential T 2g : T 2M → T 2N
is a vector bundle morphism.

Proof. It is easy to check that the pair (g, T 2g) commutes with the natural projec-
tions of the second order tangent bundles, since T 2g is fibre preserving. As a result,
in virtue of Proposition 2.2, it remains to check the local behaviour of T 2g with re-
spect to the trivializations (Uα,Φα) of T 2M and (Vβ ,Ψβ) of T 2N . By equality (3),
we see that the map

Uα −→ L(E× E,F× F) : x 7→ Ψβ,g(x) ◦ T 2
xg ◦ Φ−1

a,x

becomes smooth as coinciding with DG(φα(x))×DG(φα(x)). Here G denotes, once
again, the local expression of g with respect to the charts φa, ψβ . Hence, all the
conditions of a vector bundle morphism (see, e.g., [11]) are fulfilled. �

Remark 2.6. If we drop the conjugation assumption for ∇M , ∇N , then the local
expression of T 2g is(

Ψβ ◦ T 2g ◦ Φ−1
a

)
(x, u, v) =

=
(
DG(φα(x))(u), DG(φα(x))(v)−DG(φα(x))(ΓM

α (φα(x)))(u)(u)

+D2G(φα(x))(u, u) + ΓN
β (G(φα(x)))(DG(φα(x))(u))(DG(φα(x))(u))

)
.

This implies that T 2g is a smooth map and (g, T 2g) is a fibre (but not necessarily
vector) bundle morphism.

3. Connection dependence of second order structures

As we have already seen, the vector bundle structure of T 2M depends heavily on
the choice of a linear connection ∇ on the base manifold M. With the results of the
preceding section, we are now in a position to discuss the extent of this dependence.

Precisely, we obtain:

Theorem 3.1. Let ∇, ∇′ be two linear connections on M . If g is a diffeomorphism
of M such that ∇ and ∇′ are g-conjugate, then the vector bundle structures on
T 2M , induced by ∇ and ∇′, are isomorphic.

The proof is an obvious application of Theorem 2.5

We introduce the following terminology :

Two pairs (M,∇) and (M,∇′), where the linear connections ∇, ∇′ are g-
conjugate with respect to a diffeomorphism g of M, as in Theorem 3.1, are called
equivalent. Then, Theorem 3.1 implies that:
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Corollary 3.2. Up to isomorphism, the elements of the g-conjugate equivalence
class [(M,∇)]g determine the same vector bundle structure on T 2M . Consequently,
the latter structure depends not only on a pair (M,∇) but also on the entire class
[(M,∇)]g.

From the previous discussion, it becomes clear now that the identification of
two bundles T 2M , T 2N is not ensured by the existence of a mere diffeomorphism
g : M

∼=−−→ N . One has to take into account the geometry of M and N , expressed
by the linear connections on them.

Another point of view of the totality of linear connections on a smooth finite
dimensional manifold M worth noting here is that of system of connections devised
by Mangiarotti and Modugno ([12, 13]). Namely, whereas the function space of all
linear connections is infinite dimensional even in the case of finite dimensional M,
it is possible to obtain a finite dimensional bundle-representation of all linear con-
nections on M in terms of such a connection system. Indeed, there exists a unique
universal connection of which every connection in the system of connections is a
pullback. A similar relation holds between the corresponding universal curvature
and the curvatures of the connections of the system. This is a different representa-
tion of an object similar to that introduced by Narasimhan and Ramanan [14, 15]
for G-bundles, also allowing a proof of Weil’s theorem (cf. [10, 9, 2]).

The system of all linear connections on a finite dimensional manifold M has a
representation on the tangent bundle via the system space

CT = {α⊗ jγ ∈ T ∗M ⊗M JTM | jγ : TM → TTM projects onto ITM}.
Here we view ITM as a section of T ∗M ⊗ TM , which is a subbundle of T ∗M ⊗

TTM , with local expression dxλ ⊗ ∂λ.
The fibred morphism for the system CT is

ξT : CT ×M TM −→ JTM ⊂ T ∗M ⊗TM TTM ,

(α⊗ jγ, ν) 7−→ α(ν)jγ.

In coordinates (xλ) on M and (yλ) on TM

ξT = dxλ ⊗ (∂λ − γi
λ ∂i) = dxλ ⊗ (∂λ − yj Γi

jλ ∂i).

Each section of CT → M , such as Γ̃ : M → CT : (xλ) → (xλ, γµϑ); determines
the unique linear connection Γ = ξT ◦ (Γ̃◦πT , ITM ) with Christoffel symbols Γλ

µϑ.
On the fibred manifold π1 : CT ×M TM → CT ; the universal connection is given

by:

ΛT : CT ×M TM −→ J(CT ×M TM) ⊂ T ∗CT ⊗ T (CT ×M TM)

(xλ, vλ
µν , y

λ) 7−→ [(Xλ, V λ
µν) → (Xλ, V λ

µν , Y
µV λ

µνX
ν)].

In coordinates,

ΛT = dxλ ⊗ ∂λ + dva ⊗ ∂a + yµvi
µν dx

ν ⊗ ∂i.

Explicitly, each Γ̃ ∈ Sec(CT /M) gives an injection (Γ̃ ◦ πT , ITM ), of TM into
CT × TM , which is a section of π1, Γ coincides with the restriction of ΛT to this
section:

ΛT |(Γ̃◦πT ,IT M )TM = Γ,

and the universal curvature of the connection Λ is given by:

ΩT = dΛT
ΛT : CT ×M TM → ∧2(T ∗CT )⊗TM V (TM).

So, here the universal curvature ΩT has the coordinate expression:

ΩT =
1
2

(
ykvj

kλ ∂jy
mvi

mµ dx
λ ∧ dxµ + 2 ∂ay

mvi
mµ dx

a ∧ dxµ
)
⊗ ∂i.
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For more details of the corresponding universal calculus see Dodson and Mod-
ugno [6]. In the case of Riemannian and pseudo-Riemannian manifolds, Canarutto
and Dodson [1] used systems of principal connections to establish certain incom-
pleteness stability properties; Del Riego and Dodson [3] established certain topo-
logical and universal properties of sprays and Lie algebras, obtaining associated
completeness criteria.

The system of linear connections provides a bundle framework in which choices
of linear connection may be made, and hence vector bundle structures on T 2M
are determined. It would be interesting to extend to infinite dimensional Banach
manifolds the systems of connections approach using the methodology presented
in this paper, so as to characterize further the isomorphism classes of second order
tangents.
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