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Abstract
Yue et al. [Yue et al. 2001]recently reviewed various bivariate gamma distribution models and

concluded that they will be useful in hydrology. Here we contribute a detailed study of the McKay
bivariate gamma distribution and demonstrate its applicability to the joint probability distribution
of void and capillary sizes obtained from soil tomography. The information geometry of the space
of McKay bivariate gamma distributions provides a useful mechanism for discriminating between
bivariate stochastic processes with positive covariance and gamma marginal distributions. In most
cases we found that the information-theoretic metric is more sensitive than the classical Bhattacharyya
distance or the Kullback-Leibler divergence; this finding persisted also for data from model porous
media, and for data from simulations.
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1 Introduction

The present article adds to the study of Yue et al. [Yue et al. 2001], which reviewed various bivariate
gamma distributions that are constructed from gamma marginals and concluded that bigamma distri-
bution models will be useful in hydrology. Here we study the McKay bivariate gamma distribution,
which has positive covariance, and demonstrate its applicability to the joint probability distribution
of adjacent void and capillary sizes in soils; in this context we compare the discriminating power of
an information theoretic metric with two classical distance functions in the space of probability distri-
butions. We believe that similar methods may be applicable elsewhere in hydrology, to characterize
stochastic structures of porous media and to model correlated flow variables. Moreover, we have else-
where studied the information geometry of commonly used bivariate Gaussian and bivariate exponential
distributions [Arwini 2004, Arwini and Dodson 2005] and these may have relevance in other stochastic
hydrological processes. Phien [Phien 1993] considered the distribution of the storage capacity of reser-
voirs with gamma inflows that are either independent or first-order autoregressive and our methods
may have relevance in modelling and quantifying correlated inflow processes. Govindaraju and Kav-
vas [Govindaraju and Kavvas 1992] used gamma or Gaussian distributions to model rill depth and width
at different spatial locations and again an information geometric approach using a bivariate gamma or
Gaussian model may be useful in further probing the joint behavior of these rill geometry variables.

2 Gamma distributions and randomness

The family of gamma probability density functions is given by

{p(x;β, α) =
(
α

β

)α
xα−1

Γ(α)
e−

α
β x|α, β ∈ R+}, x ∈ R+ (2.1)
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so the space of parameters is topologically R+ × R+. It is an exponential family and it includes as a
special case (α = 1) the exponential distribution itself, which complements the Poisson process on a line.
It is pertinent to our interests that the property of having sample standard deviation independent of the
mean actually characterizes gamma distributions, as shown recently [Hwang and Hu 1999]. They proved,
for n ≥ 3 independent positive random variables x1, x2, . . . , xn with a common continuous probability
density function f, that having independence of the sample mean x̄ and sample coefficient of variation
cv = S/x̄ is equivalent to f being a gamma distribution. Of course, the exponential distribution has unit
coefficient of variation.
The univariate gamma distribution is widely used to model processes involving a continuous positive
random variable, for example, in hydrology the inflows of reservoirs [Phien 1993] and the depth and
width of rills [Govindaraju and Kavvas 1992]. The information geometry of gamma distributions is
known and has been applied recently to represent and metrize departures from randomness of, for ex-
ample, the processes that allocate gaps between occurrences of each amino acid along a protein chain
within the Saccharomyces cerevisiae genome [Cai et al. 2002], clustering of galaxies and communica-
tions, [Dodson 1999, Dodson 2000, Dodson 2001]. We have made precise and proved the statement
that around every random process on the real line there is a neighborhood of processes governed by
the gamma distribution, so gamma distributions can approximate any small enough departure from ran-
domness [Arwini and Dodson 2004]. Such results are, by their topological nature, stable under small
perturbations of a process, which is important in real applications. This, and their uniqueness prop-
erty [Hwang and Hu 1999], gives confidence in the use of gamma distributions to model near random
processes. Moreover, the information-theoretic heritage of the metric for the neighborhoods lends signif-
icance to the result.

2.1 Bivariate gamma processes

It is logical next to consider bivariate processes which may depart from independence and from ran-
domness. Two natural choices arise for marginal distributions: Normal or log-Normal distributions and
gamma distributions. For example, recently in hydrology, bivariate gamma distributions have been re-
viewed [Yue et al. 2001], and from [Govindaraju and Kavvas 1992] we may expect that rill depth and
width admit bivariate gamma or bivariate Gaussian models with positive covariance. In this paper we
concentrate on the case when the marginals are gamma and the covariance is positive, which has appli-
cation to the modelling of void and capillary size in porous media like soils.
Positive covariance and gamma marginals gives rise to one of the earliest forms of the bivariate gamma
distribution, due to Mckay [McKay 1934], defined by the density function

f(x, y) =
c(α1+α2)xα1−1(y − x)α2−1e−cy

Γ(α1)Γ(α2)
defined on y > x > 0 , α1, c, α2 > 0 (2.2)

One way to view this is that f(x, y) is the probability density for the two random variables X and
Y = X + Z where X and Z both have gamma distributions. The marginal distributions of X and Y
are gamma with shape parameters α1 and α1 + α2 , respectively. The covariance Cov and correlation
coefficient ρM of X and Y are given by :

Cov(X,Y ) =
α1

c2
= σ12 (2.3)

ρM (X,Y ) =
√

α1

α1 + α2
. (2.4)

Observe that in this bivariate distribution the covariance, and hence correlation, tends to zero only as α1

tends to zero.
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3 Mckay bivariate gamma 3-manifold

We consider the Mckay bivariate gamma model as a 3-manifold, equipped with Fisher information as
Riemannian metric. The classical family of Mckay bivariate gamma distributions is given by:

f(x, y;α1, σ12, α2) =
( α1

σ12
)

(α1+α2)
2 xα1−1(y − x)α2−1e

−
q

α1
σ12

y

Γ(α1)Γ(α2)
, (3.5)

defined on 0 < x < y < ∞ with parameters α1, σ12, α2 > 0. Where σ12 is the covariance of X and Y .
The correlation coefficient and marginal functions, of X and Y re given by :

ρM (X,Y ) =
√

α1

α1 + α2
(3.6)

fX(x) =
( α1

σ12
)

α1
2 xα1−1e

−
q

α1
σ12

x

Γ(α1)
, x > 0 (3.7)

fY (y) =
( α1

σ12
)

(α1+α2)
2 y(α1+α2)−1e

−
q

α1
σ12

y

Γ(α1 + α2)
, y > 0 (3.8)

Note that it is not possible to choose parameters such that both marginal functions are exponential.

Proposition 3.1 Let M be the set of Mckay bivariate gamma distributions, that is

M = {f |f(x, y;α1, σ12, α2) =
( α1

σ12
)

(α1+α2)
2 xα1−1(y − x)α2−1e

−
q

α1
σ12

y

Γ(α1)Γ(α2)
,

y > x > 0, α1, σ12, α2 > 0} (3.9)

Then we have :

1. Identifying (α1, σ12, α2) as a local coordinate system, M is a 3-manifold.

2. M is a Riemannian 3-manifold with Fisher information metric G = [gij ] given by :

[gij ] =

 −3 α1+α2
4 α12 + ψ′(α1) α1−α2

4 α1 σ12
− 1

2 α1
α1−α2
4 α1 σ12

α1+α2
4 σ122

1
2 σ12

− 1
2 α1

1
2 σ12

ψ′(α2)

 (3.10)

where ψ(αi) = Γ′(αi)
Γ(αi)

(i = 1, 2).

4 Distance estimates in the McKay manifold

Distance between a pair of points in a Riemannian manifold is defined as the infimum of arc lengths over
all curves between the points. For sufficiently nearby pairs of points there will be a unique minimizing
geodesic curve that realises the infimum arc length. In general, such curves are hard to find between
more distant points. However, we can obtain an upper bound on distances between two points T0, T1 ∈
M by taking the sum of arc lengths along coordinate curves that triangulate the pair of points with
respect to the coordinate axes. We adopted similar methods in the gamma manifold for univariate
processes [Cai et al. 2002, Dodson and Scharcanski 2003]. Here we use the metric for the McKay manifold
(3.10) and obtain the following upper bound on the information metric distance in M from T0 with
coordinates (α1, σ12, α2) = (A,B,C) to T1 with coordinates (α1, σ12, α2) = (a, b, c)

dM (T0, T1) ≤

∣∣∣∣∣
∫ a

A

√∣∣∣∣C − 3x
4x2

+
d2 log Γ(x)

dx2

∣∣∣∣ dx
∣∣∣∣∣ +

∣∣∣∣∣
∫ c

C

√
|d

2 log Γ(y)
dy2

| dy

∣∣∣∣∣ +

∣∣∣∣∣
∫ b

B

√
A+ C

4 z2
dz

∣∣∣∣∣ . (4.11)

The square roots arise from the norms of tangent vectors to coordinate curves and it is difficult to
obtain the closed form solution for information distance, dM . However, by removing the square roots
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the integrals yield information-energy values EM , which can be evaluated analytically. Then the square
root of the net information-energy differences along the coordinate curves gives a closed analytic ‘energy-
distance’ dEM =

√
EM , which we can compare with dM . The net information-energy differences along the

coordinate curves from T0 with coordinates (α1, σ12, α2) = (A,B,C) to T1 with coordinates (α1, σ12, α2) =
(a, b, c) is

EM (T0, T1) ≤
∣∣∣∣∫ a

A

(
C − 3x

4x2
+
d2 log Γ(x)

dx2

)
dx

∣∣∣∣ +
∣∣∣∣∫ c

C

d2 log Γ(y)
dy2

dy

∣∣∣∣ +

∣∣∣∣∣
∫ b

B

A+ C

4 z2
dz

∣∣∣∣∣
≤

∣∣∣∣∫ a

A

(
C − 3x

4x2

)
dx

∣∣∣∣ +
∣∣∣∣∫ a

A

d2 log Γ(x)
dx2

dx

∣∣∣∣ +
∣∣∣∣∫ c

C

d2 log Γ(y)
dy2

dy

∣∣∣∣ +
A+ C

4

∣∣∣∣1b − 1
B

∣∣∣∣
= | C

4 a
− C

4A
+

3 log( a
A )

4
|+ |ψ(a)− ψ(A)|+ |ψ(c)− ψ(C)|+ A+ C

4

∣∣∣∣1b − 1
B

∣∣∣∣ . (4.12)

dEM =
√
EM . (4.13)

where ψ = Γ′

Γ is the digamma function.
Next we compare distances between bivariate gamma distributions obtained using this information met-
ric upper bound (4.11) in the McKay manifold metric (3.10) with the classical Bhattacharyya dis-
tance [Bhattacharyya 1943] between the distributions. Some further discussion of classical distance mea-
sures can be found in Chapter 3 of Fukunga [Fukunga 1991]; the Bhattacharyya distance is actually a
special case of the Chernoff distance [Fukunga 1991].
The Bhattacharyya distance from T0 to T1 defined on 0 < x < y <∞ is given by

dB(T0, T1) = − log
∫ ∞

y=0

∫ y

x=0

√
T0 T1 dx dy

= − log

Γ(A+a
2 )Γ(C+c

2 )(A
B )

A+C
4 (a

b )
a+c
4 (

√
a

2
√

b
+

√
A

2
√

B
)
−1
2 (A+C+a+c)√

Γ(A) Γ(C) Γ(a) Γ(c)

. (4.14)

The Kullback-Leibler ‘distance’ [Kullback 1959] or ‘relative entropy’ from T0 to T1 defined on 0 < x <
y <∞ is given by

KL(T0, T1) =
∫ ∞

y=0

∫ y

x=0

T0 log
T0

T1
dx dy

= −A+ ψ(A) (A− a)− C + ψ(C) (C − c) + log
(

Γ(a) Γ(c)
Γ(A) Γ(C)

)
+

(a+ c)
2

log
(
Ab

aB

)
+ (A+ C)

√
aB

Ab
. (4.15)

and we symmetrize this to give a true distance

dK(T0, T1) =
KL(T0, T1) +KL(T1, T0)

2
. (4.16)

5 Applications to porous media

We apply our distance measures to experimental porous media data obtained from tomographic images
of soil, and to data from model porous media and to data drawn by computer from bivariate correlated
gamma processes.
Structural characterization and classification of porous materials has attracted the attention of researchers
in different application areas, because of its great economic importance. For example, problems related
to mass transfer and retention of solids in multi-phase fluid flow through stochastic porous materials are
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ubiquitous in different areas of chemical engineering. One application of gamma distributed voids to
stochastic porous media has admitted a direct statistical geometric representation of stochastic fibrous
networks [Dodson and Sampson 1997] and their fluid transfer properties [Dodson and Sampson 2000].
Agricultural engineering is one of the sectors that has received attention recently, mostly because of
the changing practices in agriculture in developing countries, and in developed countries, with great
environmental impact [Vogel and Kretzchmar 1996], volgel:03.
Phenomenologically, mass transfer in porous media depends strongly on the morphological aspects of
the media—such as the shape and size of pores, and depends also on the topological attributes of these
media, such as the pore network connectivity [Dodson and Sampson 2000].
Several approaches have been presented in the literature for structural characterization of porous media,
involving morphological and topological aspects. [Anselmetti et al.1998] proposed the analysis of porous
media sections for their pore shape and size distributions. In their work, images are obtained using a
scanning electron microscope for micro-structural characterization, and an optical microscope for macro-
structural characterization. However, the acquisition of samples for the analysis is destructive, and it is
necessary to slice the porous media so that sections can be obtained, and then to introduce epoxy resin
for contrast. These procedures influence the structure of the media solid phase and consequently the
morphology and topology of the porous phase, which implies that the three-dimensional reconstruction
is less reliable for soil samples. In order to overcome similar difficulties, a few years earlier [Biassusi 1996]
the non-destructive testing in soil samples using tomographic images was proposed, but their goal was the
evaluation of the swelling and shrinkage properties of loamy soil. Also, other researchers have concentrated
on the ‘fingering’ phenomenon occurring during fluid flow in soils [Onody et al. 1995]. More recently,
researchers have proposed geometrical and statistical approaches for porous media characterization. A
skeletonization method based on the Voronoi diagram [Delrue et al. 1999] was introduced to estimate the
distributions of local pore sizes in porous media, see also [Ketcham Iturrino 2005].
The statistical characterization and classification of stochastic porous media, is essential for the simulation
and/or prediction of the mass transfer properties of a particular stochastic medium. Much work has been
done on the characterization of porous media but the discrimination of between different models from
observed data still remains a challenging issue. This is particularly true considering the tomographic im-
ages of porous media, often used in soil analysis; for two recent studies see [Al-Raoush and Willson 2005]
and [Ketcham Iturrino 2005].
It turns out that tomographic images of soil structure reveal a bivariate stochastic structure of sizes of
voids and their interconnecting capillaries. The information geometry of the Riemannian 3-manifold of
McKay bivariate gamma distributions provides a useful mechanism for discriminating between treatments
of soil. This method is more sensitive than that using the classical Bhattacharyya distance between the
bivariate gamma distributions and in most cases better than the Kullback-Leibler measure for distances
between such distributions.

5.1 Comparison of analyses of tomographic images of porous media

Three-dimensional tomographic images were obtained from thin slices of soil and model samples and new
algorithms were used to reveal features of the pore size distribution, and its connectivity. These features
are relevant for the quantitative analysis of samples in several applications of economic importance. The
methodology is applicable generally to stochastic porous media but here we focus on the analysis of
soil samples, in terms of the soil compaction resulting from different soil preparation techniques. The
interconnectivity of the pore network is analyzed through a fast algorithm that simulates flow. The image
analysis methods employed to extract features from these images are beyond the scope of this paper, and
will be discussed elsewhere.
The two variables 0 < x < y <∞ correspond as follows: y represents the cross-section area of a pore in
the soil and x represents the corresponding cross-sectional area of the throats or capillaries that connect
it to neighboring voids. It turns out that these two variables have a positive covariance and can be fitted
quite well to the bivariate gamma distribution (3.5). The maximum likelihood parameters (α1, σ12, α2) for
the data are shown in Table 1, together with the McKay correlation coefficients, ρM and the measured
correlation ρData. In these experiments, we used tomographic images of soil samples, and packings of
spheres of different sizes as phantoms. The soil samples were selected from untreated (i.e. forest soil
type), and treated (i.e. conventional mechanized cultivated soil, and direct plantation cultivated soil).
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The image analysis methods employed to measure the pore and throat size distributions in these images
are out of the scope of this paper, and will be discussed elsewhere.
Typical scatterplots of the throat area and pore area data are shown in Figure 1 for the untreated soil
forest A, which shows strong correlation, and in Figure 2 for the model structure 1 made from beds of
spheres, which shows weak correlation.
We see from Table 1 that the theoretical McKay correlation agrees well with that found experimen-
tally. The four distance functions dM , dEM , dB , dK are given for the four soil treatments. The infor-
mation metric dM is the most discriminating and the Bhattacharyya distance dB is the least discrimi-
nating. Over all treatments the grand means for distances from untreated (forest) soils are respectively
2.423, 1.302, 0.474, 2.113, for dM , dEM , dB , dK . The distance measures are found also for the model struc-
tures of spheres and the simulation, Table 2, but here the experimental correlation is much less than that
expected for the McKay distribution.
The soil results from Table 1 are shown in Figure 3. The first two plots use the information distance
dM and energy-distance dEM bounds (4.11, 4.13 respectively) for the McKay manifold metric (3.10), the
other two plots use the Bhattacharyya distance dB (4.14) and the Kullback-Leibler distance dK (4.14)
between the corresponding bivariate gamma distributions. The base plane d = 0 represents the natural or
forest soil; data is in pairs, two points of the same size correspond to the same soils with two treatments.
Importantly, the information metric, dM , is mainly the most discriminating between the treated and
untreated soils—the points being generally highest in the graphic for dM , though Soil D direct treatment
has a particularly high dK value. Except for Sample A, all distances agree on the ranking of effects of
treatments.
The sphere packing model results and the simulation results from Table 2 are shown in Figure 4. Note
that the McKay bivariate gamma distribution does not contain the case of both marginal distributions
being exponential nor the case of zero covariance—both of these are limiting cases and so cannot serve
as base points for distances. Thus, there is no natural reference structure from which to base distances
in these model results so here the distances shown are measured from the mean values of the three
parameters taken over the spheres. We note that the distances obtained are in each case ordered: dB <
dEM < dK < dM ; they all agree on ranking of the effects of conditions.

5.2 Computer simulation of bivariate gamma processes

Four sets of 5000 pairs (xi, yi) with 0 < xi < yi were drawn by computer from gamma distributions, with
different parameters and with varying positive covariance between the two variables, Figure 5. This data
was analyzed and from it maximum likelihood fits were made of McKay bivariate gamma distributions.
Table 3 summarizes the parameters, and the distances measured between the corresponding points are
shown in Tables 4, 5, 6 and 7. These experiments confirm that data sets 1 and 2 are more similar to each
other, than to the data sets 3 and 4, which is verified by visual inspection of the scatterplots shown in
Figure 5. If we consider that data sets 1 and 2 form one cluster, and that data sets 3 and 4 form another
cluster, it is important to verify how the distance measures we are comparing perform in terms of data
discrimination. Table 8 shows the ratios between the mean inter and intra cluster distances, indicating
that the best data separability is obtained by dEsym

M and dsym
M

1.

6 Conclusions

The recently derived Riemannian geometry of the 3-manifold of McKay bivariate gamma distributions
provides a useful mechanism for quantitative discrimination between bivariate processes with random
variables 0 < x < y and positive covariance. We applied this to some tomographic images of soil
structure and to similar images of model beds of spheres; these media exhibit a bivariate positively
correlated stochastic spatial process for the sizes of voids and their interconnecting capillaries. We
further illustrated the methodology using some simulation data.
In most cases, the information geometry, which uses a maximum likelihood metric, is more discriminating
than the classical Bhattacharyya distance, or the Kullback-Leibler divergence, between pairs of bivariate

1Given a pair of data sets A and B, the distance bounds dEM and dM are made symmetric through the average over
both directions, i.e. dsym = 1

2
(d(A, B) + d(B, A)), which are denoted here by dEsym

M and dsym
M .
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gamma distributions. We have also available the information geometry of bivariate Gaussian and bivari-
ate exponential distributions and we expect that our methodology may have other applications in the
modelling of bivariate stochastic processes in hydrology.
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Sample α1 α2 σ12 ρM ρData dM dEM dB dK

A forest 7.6249 3.581 19199.4 0.8249 0.8555 (4.1904) (1.4368) (0.1292) (0.5775)
A conv 4.7931 7.4816 22631.2 0.6249 0.7725 2.8424 1.2643 0.7920 3.2275
A direct 1.8692 3.4911 33442.6 0.5905 0.5791 3.181 1.5336 0.5855 2.7886
B forest 1.2396 2.2965 41402.8 0.5920 0.5245 (4.1611) (1.7835) (0.3948) (1.9502)
B conv 5.6754 4.8053 34612.2 0.7359 0.5500 3.7034 1.8784 0.3214 1.6816
B direct 1.3622 2.0074 30283.5 0.6358 0.5215 0.6322 0.5820 0.0346 0.1390
C forest 1.6920 2.6801 37538.3 0.6221 0.5582 (2.7858) (1.8896) (0.2140) (1.0462)
C conv 0.7736 1.2488 30697.5 0.6185 0.5466 2.3931 1.5372 0.1727 0.7403
C direct 2.8476 2.6413 25840.8 0.7203 0.7975 1.1146 0.9518 0.0910 0.3741
D forest 1.8439 1.7499 15818.7 0.7163 0.6237 (6.1671) (2.2155) (1.6124) (8.6557)
D conv 0.963 1.2533 26929.7 0.6592 0.5324 1.7529 1.3028 0.0526 0.2221
D direct 3.4262 9.9762 39626.4 0.5056 0.3777 5.5669 1.7660 2.3136 10.3993
E forest 2.7587 1.4647 26501.5 0.8082 0.7952 (1.4423) (1.1962) (0.0830) (0.3519)
E conv 3.0761 2.4388 38516.1 0.7468 0.6799 1.3283 0.9314 0.1388 0.5609
E direct 1.4987 2.107 47630.9 0.6447 0.6400 1.8977 1.2728 0.2401 0.9932

Table 1: Maximum likelihood parameters of McKay bivariate gamma fitted to hydrological survey data
extracted from tomograghic images of five soil samples, each with three treatments. For each soil, the
natural state is untreated forest; two treatments are compared : conventional and direct. The distance
functions dM , dEM , dB , dK are used to measure effects of treatments—values given are distances from
the forest untreated case, except that values in brackets give the distances between the conventional and
direct treatments. In most cases, dM is most discriminating and dEM is second best. Except for Sample
A, all distances agree on the ranking of effects of treatments compared with untreated soils.

Sample α1 α2 σ12 ρM ρData dM dEM dB dK

1(2.4 a 3.3 mm) 1.0249 0.1469 54.8050 0.9341 0.3033 3.6369 1.9071 0.4477 2.9319
2(1.4 a 2.0 mm) 1.6789 0.5117 4.3863 0.8755 0.1714 2.3057 1.5185 0.4195 1.7888
3(1.0 a 1.7 mm) 2.1416 2.8396 0.7103 0.6557 0.1275 4.5013 2.1216 0.6751 4.1202
Simulation 0.1514 0.3185 4137 0.5676 0.1118 8.5318 2.9209 0.8539 11.4460

Table 2: Maximum likelihood parameters of McKay bivariate gamma fitted to data extracted from
tomograghic images of model beds of spheres and a simulation. There is no reference structure from
which to base distances so here the distances shown are measured from the mean values (α1, σ12, α2) =
(1.6151, 19.9672, 1.1661) of the three parameters taken over the spheres. We note that the distances
obtained for the sphere models are in every case ordered: dB < dEM < dK < dM and they agree on
the ranking of effects of conditions. The simulation data, having α1 << 1, seems very different from the
model sphere beds.

# x̄ ȳ α1 α2 σ12 ρM ρdata

1 0.9931 1.5288 1.0383 0.9174 0.9607 0.7286 0.9017
2 1.1924 1.7275 1.0176 0.7934 1.4117 0.7443 0.9304
3 2.9793 3.5151 1.0383 0.3598 8.5813 0.8618 0.9873
4 3.2072 3.7429 1.0165 0.3432 10.1006 0.8646 0.9892

Table 3: For the four simulated bivariate gamma data sets 1,2,3,4 we give the maximum likelihood McKay
parameters.
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dEsym
M sample set 2 sample set 3 sample set 4

sample set 1 1.2505 2.5489 2.2506
sample set 2 0.0000 2.1854 2.2988
sample set 3 0.0000 0.0000 0.2067

Table 4: Pairwise dEsym
M distances for the four simulated bivariate gamma data sets 1,2,3,4.

dsym
M sample set 2 sample set 3 sample set 4

sample set 1 1.2625 2.4836 2.6511
sample set 2 0.0000 2.0532 2.1788
sample set 3 0.0000 0.0000 0.1653

Table 5: Pairwise dsym
M distances for the four simulated bivariate gamma data sets 1,2,3,4.

dK sample set 2 sample set 3 sample set 4
sample set 1 0.6804 1.0368 1.1793
sample set 2 0.0000 0.7013 0.1828
sample set 3 0.0000 0.0000 0.0040

Table 6: Pairwise dK distances for the four simulated bivariate gamma data sets 1,2,3,4.

dB sample set 2 sample set 3 sample set 4
sample set 1 0.1661 0.2254 0.2506
sample set 2 0.0000 0.1596 0.1815
sample set 3 0.0000 0.0000 0.0010

Table 7: Pairwise dB distances for the four simulated bivariate gamma data sets 1,2,3,4.

dEsym
M dsym

M dK dB

1.6734 1.6401 1.2225 1.1323

Table 8: Expected ratio between inter/intra cluster distances for the four simulated bivariate gamma
data sets 1,2,3,4.
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Figure 1: Scatterplot of the data for untreated forest A soil sample, Table 1.
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Figure 2: Scatterplot of the data for model sphere bed structure Sample 1 of Table 2.



12 Comparing Distance Measures Between Bivariate Gamma Processes

2
4 2

4
6

8 100

2.5

5

7.5

10

2
4

2
4 2

4
6

8 100

2.5

5

7.5

10

2
4α1 α2

dEM

α1

α2

dM

2
4 2

4
6

8 100

2.5

5

7.5

10

2
4

2
4 2

4
6

8 100

2.5

5

7.5

10

2
4

α1

α2

dK

α1

α2

dB

Figure 3: Distances of 5 pairs of treated soil samples from the untreated forest soil, in terms of their porous
structure from tomographic images, using the data from Table 1. Clockwise from the top left the plots
use: the information theoretic bounds (4.11) dM and root energy dEM for the McKay manifold metric
(3.10), the the Bhattacharyya distance (4.14) dB and the Kullback-Leibler distance (4.14) dK between the
corresponding bivariate gamma distributions. The plane d = 0 represents the natural or forest soil; data
is in pairs, two points of the same size correspond to the same soils with two treatments. The information
metric, top left, is most discriminating.
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Figure 4: Distances of model sphere samples and a simulation, measured from the average parameter
values for the three sphere samples, using the data from Table 2. For the model sphere structures, the
distances are in each case ordered: dB < dEM < dK < dM , with the exception of the simulation. The
increasing point sizes refer to: the model sphere beds 1, 2, 3, respectively.
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Figure 5: Scatterplot of the data for computer simulations of the four positively correlated gamma processes
with x < y : top row # 1,2, second row # 3,4. Maximum likelihood McKay parameters are given in
Table 3.
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