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Abstract

The random model for allocation of an amino acid A at locations along a protein chain is
controlled by an underlying binomial distribution for occurrence of A, with density given by
the relative abundance of A. Here we derive analytically the distribution of lengths of inter-A
spaces in sequences of arbitrary length n, with arbitrary relative abundance p of occurrencies of
A. This provides a well-defined reference structure for comparison with observations. We derive
also the distribution function for inter-AA spaces.

It turns out that the standard deviation of inter-A space length is approximately proportional
to the mean inter-A space length, independently of sequence length n and relative abundance
p. This means that, to the extent that the space length can be approximated by a continuous
random variable, the distribution of space lengths is represented by a gamma distribution. The
significance of this latter approximation is that the gamma family may provide models for
spacing length distributions when the underlying process is not binomial, for example, when
clustering or evening out of amino acids occurs. The new results show that actual sequences of
amino acids also do have standard deviation of spacing lengths proportional to the mean but
all exhibit more self-clustering than expected for finite sequences from a random process.

1 Binomial model

We think of a protein chain as a sequence of amino acids among which we have distinguished one,
represented by the letter A, while all others are represented by X. The relative abundance of A is
given by the probability p that an arbitrarily chosen location has an occurrence of A. Then 1 − p
is the probability that the location contains a different amino acid from A; here, all locations are
occupied by some amino acid. If the A locations are chosen with uniform probability subject to the
constraint that the net density of A in the chain is p, then either A happens or it does not; we have
a binomial process.
Therefore, in a sequence of n amino acids, the mean or expected number of occurrences of A is np
and its variance is np(1− p), but it is not immediately clear what will be the distribution of lengths
of spaces between occurrencies of A. Evidently the distribution of such lengths r, measured in units
of one location length also is controlled by the underlying binomial distribution.
We are interested in the probability of finding in a sequence of n amino acids a subsequence of form

· · ·XA
︷ ︸︸ ︷
X · · ·X AX · · ·︸ ︷︷ ︸,

where the overbrace ︷︸︸︷ encompasses precisely r amino acids that are not A and the underbrace︸︷︷︸ encompasses precisely n amino acids, the whole sequence.

2 Derivation of the distributions

In a sequence of n locations filled by amino acids we consider the probability of finding a subsequence
containing two A’s separated by exactly r non-A X’s, that is the occurrence of an inter-A space
length r.

1



2 On random sequence spacing distributions

It is not difficult to see that the probability distribution function P(r, p, n) for inter-A space length
r reduces to the first expression below (1), which is a geometric distribution and simplifies to (2)

P(r, p, n) =

(
p2(1− p)r(n− r − 2)

)∑n−2
r=0 (p2(1− p)r(n− r − 2))

, (1)

=
(1− p)1+r

p2 (n− r − 2)
−1 + (1− p)n + p (n + p− n p)

, (2)

for r = 0, 1, . . . , (n− 2).

By setting r = 0, equation (2) gives P(0, p, n), the probability of finding a pair of form AA.

The mean r̄ and standard deviation σr of the distribution (2) are given for r = 0, 1, . . . , (n− 2), by

r̄ =
n−2∑
r=0

r P(r, p, n)

=
((1− p)n (2 + (−3 + n) p)) + (−1 + p)2 (−2 + (−1 + n) p)

p ((1− p)n + p (n + p− n p)− 1)
(3)

σr =

√√√√(n−2∑
r=0

r2 P(r, p, n)

)
− r̄2

=

√√√√ (p− 1)
(
−2 (1− p)2 n − (1− p)n

K(r, p, n)− (p− 1)2 (2 + (n− 1) p (n p− 4))
)

p2 ((1− p)n + p (n + p− n p)− 1)2
, (4)

where we make the abbreviation

K(r, p, n) =
(
4 n p− 4 + (n− 6) (n− 1) p2 + (n− 2)2 (n− 1) p3

)
(5)

for r = 0, 1, . . . , (n− 2).

Example distributions are shown in Figure 1, for a sequence of n = 200 amino acids with mean
probability p = 0.01 (left, red) which has from equations (3), (4) r̄ = 46.9, σr = 39.3, and p = 0.02
(right, blue) which has from equations (3), (4) r̄ = 34.1, σr = 31.5.

3 Properties of the distributions

The coefficient of variation is given by

cvr =
σr

r̄
=

p ((1− p)n − 1 + p (n + p− n p)) L(r, p, n)
(1− p)n (2 + (n− 3) p) + (p− 1)2 ((−1 + n) p− 2)

where we make the abbreviations

L(r, p, n) =

√√√√ (1− p)
(
2 (1− p)2 n + (1− p)n

M(r, p, n) + (p− 1)2 (2 + (n− 1) p (n p− 4))
)

p2 ((1− p)n + p (n + p− n p− 1))2
(6)

M(r, p, n) =
(
4( n p− 1) + (n− 6) (n− 1) p2 + (n− 2)2 (n− 1) p3

)
. (7)

The two main variables are the number of amino acids, n, in the sequence and the abundance
probability p of occurrence of A; their effects on the statistics of the distribution of inter-A space
lengths are illustrated in Figure 2 and Figure 3, respectively.

4 Inter-pair spacing distributions

Now we are interested in the probability of finding in a sequence of n amino acids a subsequence of
form

· · ·XAA
︷ ︸︸ ︷
X · · ·X AAX · · ·︸ ︷︷ ︸,
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where the overbrace ︷︸︸︷ encompasses precisely r amino acids that are not A and the underbrace︸︷︷︸ encompasses precisely n amino acids, the whole sequence.

Following a similar approach to that in section 2 we can obtain the probability distribution of inter-
AA spacings, in sequences of length n with relative abundance of A given by p. This distribution
is:

Q(r, p, n) =
(1− p)3+r

p2 (4− n + r)
−(1− p)n + (p− 1)3 ((n− 3) p− 1)

(8)

for r = 0, 1, . . . , (n− 4).

The mean inter-AA spacing is given by

r̄AA = −

(
(1− p)n (2 + (n− 5) p) + (p− 1)4 (−2 + (−3 + n) p)
− ((1− p)n

p) + (−1 + p)3 p (−1 + (−3 + n) p)

)
(9)

for r = 0, 1, . . . , (n− 4).

The standard deviation is known but it is rather cumbersome to express. Qualitative properties of
the distribution (8) of inter-AA space lengths are similar to those of the inter-A space lengths (2).

5 Relation to gamma distributions

Roughly, the standard deviation of the inter-A space lengths is proportional to the mean; mean
and standard deviation increase monotonically with increasing n and decrease monotonically with
increasing p. In fact, for both cases shown in Figures 2 and 3, the numerical values lie close to the
line of slope 1, namely

σr = r̄. (10)

It is known that the property of having coefficient of variation independent of the mean actually
characterizes gamma distributions, as shown recently by Hwang and Hu [2]. They proved, for m ≥ 3
independent positive random variables x1, x2, . . . , xm with a common continuous probability density
function h, that having independence of the sample mean x̄ and sample coefficient of variation is
equivalent to h being a gamma distribution.
The family of gamma distributions has continuous event space over the positive real numbers R+,
its two parameters are τ, ν ∈ R+ and probability density functions are given by

f(t; τ, ν) =
(ν

τ

)ν tν−1

Γ(ν)
e−tν/τ . (11)

Here, Γ is the gamma function defined by

Γ(ν) =
∫ ∞

0

sν−1 e−s ds, (for positive integer n, Γ(n) = (n− 1)!).

Then E(t) = τ is the mean and V ar(t) = τ2/ν is the variance, so the coefficient of variation√
V ar(t)/τ = 1/

√
ν is independent of the mean.

Figure 4 shows the plot of gamma parameter ν =
(

r̄
σr

)2

in (11) against mean r̄ for inter-A space
length distributions (2). The mean probability for the occurrence of A is p = 0.01 (red) and p = 0.02
(blue), corresponding to the cases in Figures 1, 2. For asymptotically long sequences, n → ∞, we
expect then to have ν → 1, the random case. For random spacings in an infinite sequence we have
a gamma distribution with ν = 1, which is precisely the exponential distribution complementary to
a Poisson process of events.
In Figure 5 we show the joint effects of p and n on ν; for large n, as expected, we seem to have
ν → 1. However, we do find limiting values less than 1. For example

At p = 0.01, lim
n→∞

ν = 0.99 (12)

At p = 0.1, lim
n→∞

ν = 0.9. (13)
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Indeed, we find that ν < 1 for some sequence lengths in the range of practical interest; for example,
the parameter ν passes from above 1 at small p, n through the plane at height 1, and then remains
at about 0.9. The two Figures 4, 5 illustrate the apparent departure from randomness that arises
from sampling an underlying random process with finite sequences.
Clearly, from Figure 4, the estimate of the gamma parameter, hence also the coefficient of variation,
is not independent of the mean so we do not expect a gamma distribution to be a perfect model.
Significantly however, all values shown there indicate ν > 1, which differs from the random case
ν = 1; it differs also from the observed spacings of the twenty amino acids in 6294 proteins with
sequence lengths up to n = 4092, all had ν < 1 [1]. Thus, we have that finite sequences drawn from
an infinite random sequence exhibit ν > 1, which corresponds to an apparent smoothing or evening
out of occurrencies whereas actual sequences of amino acids exhibit ν < 1, which corresponds to
self-clustering [1]. Furthermore, the experimental data in [1] gave standard deviation and mean
values lying around the line

σr =
4
3

r̄ (14)

with relative abundance values in the range 0.01 ≤ p ≤ 0.1 and sequence lengths up to n = 4092.
We see that this equation differs from the random case in equation (10) by having a slightly steeper
slope.
The significance of this is that the gamma family may indeed provide models for spacing length
distributions when the underlying process is not binomial, for example, when clustering or evening
out of amino acids occurs. The new results show that though also actual sequences of amino acids
do have standard deviation of spacing lengths proportional to the mean, nevertheless their spacings
exhibited more self-clustering than expected for finite sequences from a random process.
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Figure 1: Probability distribution of space length r between occurrences of amino acid A shown for
the range 0 ≤ r ≤ 60 in a random sequence of n = 200 amino acids. The mean probability for the
occurrence of A is p = 0.01 (left, red) where we find r̄ = 46.9, σr = 39.3, and p = 0.02 (right, blue)
where we find r̄ = 34.1, σr = 31.5.
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Figure 2: Effect of sequence length n in random amino acid sequences of length from n = 50 to
n = 4000 in steps of 50. Plot of standard deviation σr against mean r̄ for inter-A space length
distributions (2). The mean probability for the occurrence of A is p = 0.01 (right, red) and p = 0.02
(left, blue), corresponding to the cases in Figure 1. The standard deviation is roughly equal to the
mean; mean and standard deviation increase monotonically with increasing n.
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Figure 3: Effect of relative abundance, probability p, over the range 0.01 ≤ p ≤ 0.1 in steps of
0.01. Plot of standard deviation σr against mean r̄ for inter-A space length in random sequences
of length n = 200 amino acids (light green) and length n = 500 amino acids (dark green), with
probability 0.01 ≤ p ≤ 0.1 for occurrence of A. The standard deviation is for many practical purposes
proportional to the mean; mean and standard deviation decrease monotonically with increasing p.
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Figure 4: Effect of sequence length n in random amino acid sequences of length from n = 50 to
n = 4000 in steps of 50. Plot of gamma parameter ν from (11) against mean r̄ for inter-A space
length distributions (2). The mean probability for the occurrence of A is p = 0.01 (right, red) and
p = 0.02 (left, blue), corresponding to the cases in Figures 1 and 2. We expect that, as n → ∞, so
ν → 1, the random case.
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Figure 5: Effect of relative abundance p, and sequence length n in random amino acid sequences
of length from n = 50 to n = 500. Plot of gamma parameter ν from (11) for inter-A space length
distributions (2). This illustrates apparent departures from randomness when we sample the process
with finite sequences; in the case of infinite sequences we expect to recover the random case, shown
by the plane ν = 1. In fact, here the parameter ν passes from above at small p, n through the plane
at height 1, and then remains at about 0.9.
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Figure 6: A section through Figure 5. Effect on gamma parameter ν of sequence length n in random
amino acid sequences for fixed relative abundance p = 0.05. The value p = 0.05 was the average
relative abundance of the 20 amino acids for the data reported in [1] but that data yielded values
0.59 ≤ ν ≤ 0.95, indicating self-clustering.
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