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Abstract

We show that gamma distributions provide models for departures from randomness since every
neighbourhood of an exponential distribution contains a neighbourhood of gamma distributions, using
an information theoretic metric topology. Moreover, every neighbourhood of the uniform distribution
contains a neighbourhood of log-gamma distributions. We derive also the information geometry of the
3-manifold of McKay bivariate gamma distributions, which can provide a metrization of departures
from randomness and departures from independence for bivariate processes. The curvature objects
are derived, including those on three submanifolds. As in the case of bivariate normal manifolds, we
have negative scalar curvature but here it is not constant and we show how it depends on correlation.
These results have applications, for example, in the characterization of stochastic materials.

1 Gamma distributions and randomness

The family of gamma probability density functions is given by

. (e e s R+ R* 1.1
W =(5) e tlaser), e (1)

so the space of parameters is topologically Rt x R*. It is an exponential family and it includes as a
special case (a = 1) the exponential distribution itself, which complements the Poisson process on a line.
It is pertinent to our interests that the property of having sample standard deviation independent of the
mean actually characterizes gamma distributions, as shown recently by Hwang and Hu [10]. They proved,
for n > 3 independent positive random variables x1,xs, ..., z, with a common continuous probability
density function f, that having independence of the sample mean Z and sample coefficient of variation
cv = S/T is equivalent to f being a gamma distribution. Of course, the exponential distribution has unit
coefficient of variation.

The univariate gamma distribution is widely used to model processes involving a continuous positive
random variable. Its information geometry is known and has been applied recently to represent and
metrize departures from randomness of, for example, the processes that allocate gaps between occurrences
of each amino acid along a protein chain within the Saccharomyces cerevisiae genome, see Cai et al [4],
clustering of galaxies and communications, Dodson [5l, [7], [6].

For comparison purposes, we recall that the information geometry of the univariate and multivariate
normal distributions also are known, see for example Lauritzen [11] in Amari et al [I] for the univariate
case, Sato et al [13] for the bivariate case and Skovgaard [I4] for the multivariate case. We note in
particular that the univariate and bivariate normal distributions have constant negative scalar curvature,
so geometrically they constitute parts of pseudospheres.

First, we make precise the statement that around every random (Poisson) process there is a neighbourhood
of processes governed by the gamma distribution, so gamma distributions can approximate any small
enough departure from randomness.
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Figure 1: Affine immersion in natural coordinates = «/3,« as a surface in R for the gamma manifold
G; the tubular neighbourhood surrounds all exponential distributions—these lie on the curve o =1 in the
surface.

Proposition 1.1 Every neighbourhood of an exponential distribution contains a neighbourhood of gamma
distributions.

Proof: Dodson and Matsuzoe [8] have provided an affine immersion in Euclidean R3 for G, the manifold
of gamma distributions with Fisher information metric. The coordinates (6',6%) = (u = /3, a) form a
natural coordinate system (c¢f Amari and Nagaoka [2]) for the gamma manifold G. Then G can be realized
in Euclidean R? by the graph of the affine immersion {h, £} where £ is the transversal vector field along

h 2} 8]:

I 0
h:Q—>R3:(Z)»—> « , &=10
logT'(a) — alog 1

The submanifold of exponential distributions is represented by the curve
3 1
(0,00) = B* : o1 {y1,1,log -}
I

and a tubular neighbourhood of this curve will contain all immersions for small enough perturbations
of exponential distributions. In Figure [I] this is depicted in natural coordinates p,« and in Figure
the corresponding surface and tubular neighbourhood (not here an affine immersion, just a continuous
image) is shown in the usual (o, 3) coordinates of the gamma family . The tubular neighbourhood in
Figure [2] intersects with the gamma manifold immersion to yield the required neighbourhood of gamma
distributions, which completes our proof. O

2 Neighbourhoods of the uniform distribution

A simple transformation of random variable z € R™ in (1.1) to 2 = ™ € [0,1] converts a gamma
distribution into a log-gamma distribution, which turns out to have the same geometry.

Proposition 2.1 (Dodson [7]) The family of log-gamma probability density functions

1-F ava a—1
17 (2)a (log 1)

I(a)

{9(z,a,8) = o, 3 € RT}, 2 €[0,1] (2.2)
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Figure 2: Continuous image of the affine immersion in Figure |1 as a surface in R using standard
coordinates for the gamma manifold G; the tubular neighbourhood surrounds all exponential distributions—
these lie on the curve o =1 in the surface.

determines a Riemannian manifold L with information-theoretic metric having the properties:

o L contains the uniform distribution as the limit: limg_q g(z,6,1) = g(2,1,1) =1

e L contains approximations to truncated normal distributions for 3 >> 1

o L is isometrically equivalent to the gamma manifold G. O

Through this isometry and the result of Dodson and Matsuzoe [S] we have an immersion in R3 that
represents also the log-gamma manifold and, since the isometry sends the exponential distribution to the
uniform distribution on [0, 1], we obtain another corollary:

Proposition 2.2 FEvery neighbourhood of the uniform distribution on [0,1] contains a neighbourhood of
log-gamma distributions. O

The value of such topological results lies in the fact that they have qualitative consequences that are stable
under small perturbations of a process, something that would be important in real applications. It gives
confidence in the use of gamma distributions to model near random processes cf. eg. [4] and log-gamma
distributions to model processes subordinate to near-uniform distributions cf. eg. [7]. Moreover, the fact
that we have an information-theoretic metric topology for these neighbourhoods lends significance to the
result.

3 McKay bivariate gamma distribution

First consider the 3-parameter family of univariate gamma distributions with density function :

a a—1

a\" (z—7) _aG=y)

g(x; B,a,7y) = () ——e 5 , x>~42>0, [B,a>0. (3.3)
B I'(a)

Evidently, the extra parameter v > 0 is a location shift and when v = 0 we recover the univariate gamma

distribution (|1.1)), while when o = 1 we obtain the exponential distributions with two parameters. The

mean T, standard deviation o, and coefficient of variation cv,, for (3.3]) are given by

o s B _ p
x—ﬁ+’y, O'E—E, CVE—W.
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The distribution (3.3) gives us a slight generalisation of the gamma distribution (1.1), which we use in
the sequel.

One of the earliest forms of the bivariate gamma distribution is due to Mckay [12], defined by the density
function

C(a1+a2)xo¢171 (y o x)azflefcy
I'(a)I(e2)

flz,y) = definedon y > x >0, aj,c,as > 0. (3.4)
The marginal distributions are gamma with shape parameters a; and a; + as , respectively. The covari-
ance Cov and correlation coefficient p of X and Y are given by :

Cou(X,Y) = % (3.5)
pxY) = (3.6)

4 Bivariate 3-parameter gamma 5-manifold

In this section we introduce a bivariate gamma distribution which is a slight generalization of that due
to Mckay, by substituting (z — 1) for z and (y — 72) for y in equation . We call this a bivariate
3-parameter gamma distribution, because the marginal functions are univariate 3-parameter gamma
distributions. Then we consider the bivariate 3-parameter gamma models as a Riemannian 5-manifold.
The Christoffel symbols have been calculated but are not listed because they are somewhat cumbersome.

Proposition 4.1 Let X and Y be continuous random variables, then

clonten) (g oy yen=l(y —yy — g4y lemely=2)

f(xay) = F(al)F(ag)

(4.7)

defined on (y —y2) > (x — 1) >0, a1,¢,a9 > 0, 1,72 > 0, is a density function. The covariance and
marginal density functions, of X and Y are given by:

o

1z = & (4.8)
(g — ar—1g—c(z—m)
fx(x) = ( %r)(al) , 2> >0 (4.9)
(14az)(,, _ (a14a2)—1,—c(y—72)
c y— e
frly) = ( F(Z)l o ., y>y2>0. (4.10)

O

Note that the marginal functions fx and fy are univariate 3-parameter gamma distributions with pa-
rameters (¢, a1,71) and (¢, a1 + a9, ¥2), where 1 and 2 are location parameters. We shall refer to (4.7))
as giving the bivariate 3-parameter gamma distributions.

It is easily shown that ¢ = , /5—112 , so the bivariate 3-parameter gamma distribution l) can be presented

in the form:

a]tag

e e @11)

012 [(a1) T'(az)

defined on (y —y2) > (x — 1) > 0, with parameters aq, ag, 012 > 0, and 71,72 > 0.

Proposition 4.2 Let M* be the set of bivariate 3-parameter gamma distributions, that is

aytoy a;—1 as—1 —_—
. o1 T(r=y)" (Y=t —m)™ f\/”fl(ywz)
M = x, e 012 ,
(y —2) > (w — ) >0, 1,00 > 2, 012 >0, 71,72 > 0.} (4.12)

Then we have :



Khadiga Arwini and C.T.J. Dodson 5

1. Identifying (a1, a2, 012,71,72) as a local coordinate system, M* can be regarded as a 5-manifold.

2. M* is a Riemannian manifold with Fisher information matriz G = [g;;] where

o] 00 2 .l 2 .3 .4 .5
o 0 10gf(9573/7$7$79€7$»$) a1 .2 3 4 5 du d
gij_ (9 iaj f(m,y,x,x,x,x,x) Yy ax
Y1 T—y1+72 LT ox
1 2 4
and ' = ay, 1° = a9, 2° = 019, zt =1, 2° = 7.
is given by :
~ w/(a )+ —3a1+tas —1 a1 —on /oy 1 -
1 412 2o 4y 012 (71+a1),/012 2\ /a1 \/o12
—1 77[}/(05 ) 1 Va1 Vaq
21 2 2012 (1—az) \/o12 (=14+a2) \/o12
a—ag 1 ajtas Vol
4ai 012 2012 40122 0 2012% (413)
Va1 /o1 0 aq + aq —a
(—1+a1) Voiz (I—2) \/o12 (—2+a1) 012 (—2+az) 012 (—2+az) 012
—1 a1 Va1 —o g
2/a1 /012 (—14a2) \/o12 2012% (—24az) 012 (—24a2) 012
where ¥ (a;) = T(a;) (i=1,2).

5 Mckay bivariate gamma 3-manifold

The classical Mckay bivariate gamma distribution becomes a Riemannian 3-manifold, equipped with
Fisher information metric. We derive the induced geometry, i.e., the Ricci tensor, the scalar curvatures etc;
the Christoffel symbols were computed but are omitted here. In addition, we consider three submanifolds
as special cases, and discuss their geometrical structure.

5.0.1 Fisher information metric

The classical family of Mckay bivariate gamma distributions is given by:

L _ =
f(x . O 1o O )_ (%)%xmil(y—ﬁc)%*le \/612‘1/
,Y;1,012,02) = F(@1)F(a2) 5

(5.14)

defined on 0 < x < y < oo with parameters ay,012,a2 > 0. Where 015 is the covariance of X and Y.
The correlation coefficient and marginal functions, of X and Y are given by :

ag

pXY) = (5.15)
(g Famte Vo
fx(x) = 2= (o) , >0 (5.16)
(ﬂ)%fﬁy(aﬁaz)—l{\/gy
frly) = == For T on) . y>0. (5.17)

Note that it is not possible to choose parameters such that both marginal functions are exponential.

Proposition 5.1 Let M be the set of Mckay bivariate gamma distributions, that is

(1 t+ag) _ oy
ag 522 -1 . as—1 \/0'12y
—012) T (y — o) e

['(a1)l(a2)
y>a:>0, 1,012,009 >O} (518)

M = {flf(z,y;01,012,00) =

Then we have :

1. Identifying (a1, 012, 2) as a local coordinate system, M is a 3-manifold.



Neighbourhoods of randomness and geometry of McKay bivariate gamma 3-manifold

2. M is o Riemannian 3-manifold with Fisher information metric G = [g;;] given by:

3. The inverse [g] of [gi;] is given by:

St 4 yf(en) P2 oL
[9i5] = [ Torors ?11%2&22 7o ] (5.19)
T oy V(a2)
11 —1+ (a1 + ag) Y'(a2)
I (wm 9/ (an) (1— (a1 + ) wo@))) ’
g2 = - o1z (1+ (a1 — az) P'(a2))
a1 (¥ (az) +¢'(a1) (1 = (a1 +az) ¥'(a2)))
R B 1 ,
=’ (a2) + (1) (=14 (1 + a2) P'(az2))
2 _ o122 (14 (-3a1 + s + 41?9 (1)) ¢/ (a2))
I arZ (—/(02) + ¥'(a1) (—1 + (a1 + a2) ¥/(02)))
g8 = g o2 (—1+2a1 (1))
a1 (Y (a2) + ¢/ (a1) (1 — (o1 + az) ¥/ (a2)))’
33 -1+ (a1 4+ az) ¥'(aq)
f (e o ey weD) (520)
O

5.0.2 Curvature properties

We provide the various curvature objects of the McKay 3-manifold M; the Christoffel symbols are known
but they are omitted here.

Proposition 5.2 The components of the curvature tensor R;j; are given by:

Ris1p =

R1213 -

R1223 -

Rizi3 =

Riz03 =

Razo3 =

V' () (P'(oa) + (1 + a2) 9" (1))

16 0192 (¥ (1) + ¢/ (@2) — (a1 + az) ¥/ (1) P/ (az))’
Y (az) (P'(o1) + 201 9" (1))

16 ay 012 (1) 4+ ¢/ (a2) = (a1 4 az) ¥/ (a1) P (az))
' (o) ¥’ ()

16 0122 (¢ (1) + ¢/ () — (a1 + az) ¥'(a1) P’ (az))’
— (= (W' (1) ¥ (2)) + ((Bar — ag) ¥/ (on) + 4 0ar® Y () ¥ (2))

16a;? (¢'(a1) + ¢ (az) — (1 + az) ¥/ (o) ¥/ (az)) ’
—'(a2) (¥ (a2) + (a1 + ag) P (a2))

16 ay 012 (¥ (1) + 9/ (a2) = (a1 4 az) P/ (a1) P (az))
Y'(a1) (¥ (a2) + (o1 + ag) P (a2))

160122 (¢ (a1) + ¢/ (a2) — (o1 + a2) ¥/ (o) ¥ (a2)) (5.21)

while the other independent components are zero. O
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Proposition 5.3 The components of the Ricci tensor are given by the symmetric matrix R =

=39 (a1)” ¥ (a2) = 3¢ (1) ¥ ()’ n
16 01 (' (01) + 9/ (02) — (1 + a2) ¥/ (1) ¥ (a2))?
0 ¢ (1) ¥/ (@) + a9 (1) ¥/ (a2)”
16012 (¥ () + ¢/ (02) = (01 + 02) /() ¥ (012))”
' (01)? 9 (02)? = 29" (0) ¥’ (a2) 9" (1)
4/ (o) + ¥/ (02) — (a1 + a2) ¥'(a1) P'(02))?
— (a2 ¥/ (a2) ¥"(01)) + aa? ¥’ (a2)” ¥ (1)

16 0% (¢ (1) + 9/ (a2) — (a1 + az) ¥ (1) 9 (a2))?
ar Y (o) ¥ (a2)? 9" (o) + an ' (1) ¥ () ¥ ()
4 (P (1) + ¢ (a2) — (o1 + a2) P'(ay) 1/1'(042))2

39" (az) P (o) + 39" (1) " (a2)
16 a1 (' (o1) + 9/ (a2) — (a1 + a2) ¥/ (1) ¥ (az))?
—31 () " (a1) — 39 (1) ¥ (02)
16 (' (01) + 1/ (a2) — (o1 + a2) ¥/ (a1) ¥/ (a2))?
~ (0t ¥an) —aa v v(n)
8ar (¢ (en) + 1 (a2) — (o1 + a2) ¥ (a1) ¥/ (02))?
— (o ¢/ (o) P (12)) 4 2® 1//(@1)2 V" (az)
16 012 (¢ (1) + 1/ (a2) — (o1 + a2) ¥/ (a1) ¥/ (02))?
Y (1) P (a2) — an ¥’ (1) P (o) " (a2) — aa P’ (an) " (an) ¥ (a2)
A(¢' () + 9 (az) — (o + az) ¥ (1) P/ (2))?

Ry =

+

' (a1)” ¥ (02) + 9 (1) ' (a2)” — ¥ (02) 9" (on1)
16 012 (1 (1) + 9/ () — (1 + ) ¥ (1) ¥/ (a2))”
- (042 () W(OQ)) — ap ¥ (1) ¥ (02)” + a1 (a2) ¥ (1)
16 a1 012 (1 (1) + ¥/ () — (a1 + a2) ¢/(01) ¥/ (a2))?
a1 ¥ (02)” ¥ (1) — ¢ (1) 9" () + 01 ' (1) 4" (a2) n
16 015 (¥ (o) + ¢/ () — (01 + @2) 9/ (1) 9 (a2))?
— (@22 ¥ (02) ¥ (@) + a2 ¥/ (01) " (2) — @2 ¥/ (01)” " (a2)
16 01 012 (1 (1) + 9/ (02) — (a1 + ) 9 (1) ¥/ (a2))?

R12 =

+

— (W) ¥'(a2)) = ¥'(an) ¥/(02)® + (a2 " (@)
Ban (1 (1) + ¢ (a2) — (1 + @2) ¥/ () ¢/ (a2))?
¥(a2)® (¥"(ar) +29/(a1)?) + () (¥'(ar)” + 29" (1))
8 (¢ (an) + ¢/ (@) — (1 + @) ¥/ (1) P/ (a2))
— (a2 /(02)* ¥ (an)) + ' (01) " (02) — a2 /(1) " (a2)
Ban (1 (an) + 9/ (a2) = (1 + @) ¥/ (1) P/ (a2))”

Rz =

_|_

Roy =

(1 + ag) (¥'(az) (¥'(a1) (¥(en) + ¢ (@2)) = P"(ea) + (a1 + az) ¢'(as) " (1))

[Rij]:

+

16 0122 (¢ (cy) + 4 (ag) (a1 + a2) ¥'(aq) W(Oéz))Q
(1 +a2) (¥ () (=1 + (a1 + az) ¥'(a1)) ¢”(a2))
16 0122 (¢ (1) + ' (@) — (1 + a2) w’(m) P (an))?




8 Neighbourhoods of randomness and geometry of McKay bivariate gamma 3-manifold

Scalar curvature R

Figure 3: The scalar curvature R for the McKay bivariate gamma 3-manifold M; the limiting value at
the origin is —%.

Ray — Y (ag) (P (1) (V' (1) + 9 (az)) — 9" (1) + (a1 + aa) ¢’ (@) P (1)) .
812 (1 (1) + ¥ (a2) — (a1 + a2) ¥/ (1) ¥ (a2))”
P'(a1) (=1 + (a1 + az) ¥'(a1)) ¥ (a2)
(

801 (¥ (1) + ' () — (1 + an) ¥/ (1) ¥’ (a2))?

o (2 ien + (o +an) lan) (Wlen) —v(on) + lan) ¥(02) |
v 4(0 () + ' (02) — (o + a2) ¥/ (01) ¥ (02))°
¥'(01)* ¥ (02)” |
4(y (1) + 19 (az) — (a1 + a2) ¥ (a1) 9 (a2))?

(5.22)

Proposition 5.4 The scalar curvature R of M is given by:

R — (1) ¥ (a2) + ¥ (1) ¥’ (a2)” + o Y (a2)” ¥ () n
2@ (o) + ¢ (az) — (a1 + az) ¢/ (a1) W(sz))z
— (@' (a2) P" (1)) — ¥’ (1) P (a2)
(%' (o) + ¥ (02) — (o1 + a2) ¥/ (1) ¥/ (2))?
as ¥ () 9" (1) + a1 ¥ (1) 9" (an) + a2 ¥ (1) 9" ()
2(¢ (1) + 9 (a) — (o1 + a2) P/ (o) ¥/ (12))°
— (1 9" (1) " (@2)) — a2 " (1) ¥ (a2) .
24/ (o) + ' (a2) = (o1 + az) ¥'(a1) ¥/ (a2))”

_|_

(5.23)

This function is negative and has limiting value —% as ag,ag — 0. g
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Proposition 5.5 The sectional curvatures of M are given by:

=Y (ag) (V' (a1) + (a1 + az) ¥"(a1))
4 (=1 + (a1 + ag) P'(a1)) (P (1) + ¢/ (2) = (a1 + az) P (a1) P (az))

9(172) =

9(17 3) =

— (¢ (1) ¥ () + (=3 a1 + a2) ¥'(n) —4er? ¥ (1)) ¢ (az))

¢’ (1) (¥'(a2) + (o1 + az) ¥ (az))
4 (=14 (a1 + a2) ¥/ (a2)) (P'(1) + ' (az) — (a1 + a2) ¢’ (a1) P/ (a2))

9(27 3) =

Proposition 5.6 The mean curvatures o(A) (A =1,2,3) are given by :

—3an ¢/ (an)* ¥ (a2) + a2 ¢/ (1) ¢’ (a2) — 31 ¢ (a1) ¥/ (az)”

4 (Y (1) + ¥/ (a2) = (a1 + az) ¥ (a1) P/ (ag)) (=1 + (a2 + a1 (=3 +4a19(a

1)) ¢'(az))’

(5.24)

O

1) =
W = S tar (3+4m v'(an) @lan) + V(@

5 +
) — (a1 + ag) ' (a1) Y (a2))
2

ag P (1) P (a2)” + 4 a2 (1) 9 (a2)” + 3y o (042)¢”(041)
8 (a2 + a1 (=3 +4a19/ (1)) (¥ (1) + ' (az

8 (a2 + a1 (=3+4a19 (o)) (¥ (a1) + ¢ (az) — (1 + az) ¢’

) — (
— (a2 9/ (az) " (1)) — 8an ¢ (o) ¥/ (a2) ¥ (1) — Bar? ¢ (@) ¥ (e
) = (

(1)
20y az ¥ () 9" (1) + a® Y (a2)” ¢ () + 4 ar® ¥ (1) Y (a2)
8 (g + a1 (=3 +4a1¢ (1)) (' (a1) + ' (az) — (1 + a2) P’ («

)
dan? an P () ¢ (2)” 9" (1) + Bar ¢ (1) ¥ (a2) — az (1) ¥ ()
)

8 (g + a1 (=3+4a1 9 (1)) (¥ (a1) + ' (az) — (o1 + a2) ¥ (g
3129 (e1)” " (a2) — 2 a1 as ' (1) P (a2) + as? ¢ (1)’ ¥

8 (az + a1 (-3 +4ar1 ¢ (1)) (Y (a

2
05 /() (o + ) /(o) o)’ 2"
a2 " (o) V" (a2) — ar® o (ar) 9" (an) " (o) — ar? ag ¢/ () " (ay) ¢

o)

Y'(a2) (¥'(a1) (¥'(a1) + ¢ (az2)) — " (1) + (1 + az) P'(a2) ¥ (a1))
8 (¢ () +¢'(az) — (a1 + a2) ¢'(a1) 1/)/(042))2
V') (=1 + (a1 + a2) P'(a1)) ¥"(a2)
8 (¢ (1) + ' (a2) — (a1 + a2) ¥ (an1) 9 (a2))?
(

(72 Y’ (o) Y (ag) + (1 + az)

)

< &

2 (an + a1 (=3 +4a1¢/(a1))) (' (en) + 9/ (a2) — (a1 + a2) ¥/(a1) ¢/ (a2))?
P (

‘(02) (¥/(00)” = ¥(0) ) + ¥ (@) ) ¥ ()

)

8¢/ (a2) (¥ (1) + ¢/ (02) — (1 + a2) ¥ (1) ¥/ (a2))?
' (01)? 9 () '
89 (02) (' (01) + ¥/ (02) — (1 + a2) ¥/ (1) ¥ (a2))?

6 Submanifolds of the Mckay 3-manifold M

+

(5.25)

We consider three submanifolds My, Ms and M3 of the 3-manifold M of Mckay bivariate gamma distri-
butions (5.18)) f(x,y; a1, 012, a2), where we use the coordinate system (aq, 012, as). These submanifolds
have dimension 2 and so it follows that the scalar curvature is twice the Gaussian curvature, R = 2K.

Recall from above that the correlation is given by

€51
a1 + a9

In the cases of M; and Ms the scalar curvature can be presented as a function only of p, this is shown in

Figure [4
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6.1 Submanifold M; C M: oy =1

The distributions are of form:

f(@,y;1,012,00) = (6.26)

[(az) 7

defined on 0 < = < y < oo with parameters 012,32 > 0. The correlation coefficient and marginal
functions, of X and Y are given by :

p(X,Y) = (6.27)

1

14+ as

1 1,
fx(@) = e VT >0 (6.28)
01

3

( 1 )(1+a2)yage*ﬁy

fY(y) _ o12 - F(a2) , y > 0 . (629)

T

2
So here we have ay = 1;2’) , which in practice would give a measure of the variability not due to the
correlation.

Proposition 6.1 The metric tensor [g;;] and its inverse [g¥] are as follows :

1+a22 1
G =gl =| %2 2012 :| 6.30
ol = | T T (6:30
B 4015% ¢’ () —2012
Gl = [¢¥] = —1H(tpe) ¥(az)  —1+(1Faz) 7(as) (6.31)
1+ (4az) P (az) —1+(1taz) P (az)
]

Proposition 6.2 The Christoffel symbols of My are

1
rl. = At e v
11 40_12 )

Y’ (az)
242 (1 + ) Y (o)’
T 012 1/)”(02)
I = (—1 +(1+ ag) w’(az)) ’
—(1+as)
80122 (14 (1 +a2) ¥'(az))’
-1
- 4019 (—1 + (1 + 042) W(OQ)) ’
(1+ a2) ¥ (a)

2 _
T = —24+2 (14 ) ¥ (az)’ (6-32)

1 _ 1 _
F12 - F21_

2 _
Fll -

2 _ 2
Fl? - F21

Proposition 6.3 The curvature tensor of My is given by

W)+ 0+ ) (02)
e = 15 (T4 (1 02) (@) (039

while the other independent components are zero.

By contraction we obtain:
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Scalar curvature R

or
-0.05 M,
-0.1
-0.15 M,
-0.2
-0.25
-0.3

0 0.2 0.4 0.6 0.8 1

Correlation p

Figure 4: The scalar curvature R as a function of correlation p for McKay submanifolds: My (M with
a1 = 1) where R increases from —% to 0, and My (M with iy = 1) where R decreases from 0 to —3.

Ricci tensor:

Ry — (14 a2) (¥'(a2) + (1 + a2) ¥"(a2))
160122 (—1+ (1+ az) 9/(a2))®
V' (az) + (1 + ag) " ()
8012 (—1+ (14 az) ¢/(a2))””
V' (az) (¥ (a2) + (1 + az) W;(Oéz)) . (6.34)
4(=1+ (1 +az) ¢¥'(az))

Ry =

Ry =

Scalar curvature:
V' (a2) + (1 + az) P (ag)

= . (6.35)
2(=14 (14 a9) ¢¥'(a2))
O
6.2 Submanifold M, C M: ay =1
The distributions are of form:
(:71) a12+1 xal_le—\/%y
f(z,y;a1,019,1) = =222 (6.36)

T'(az) ’

defined on 0 < x < y < oo with parameters aj,012 > 0. The correlation coefficient and marginal
functions, of X and Y are given by :

aq
X)Y) = 6.37
pxY) = (6.37)
a _ /o1
Frla) = () Femte VT (6.38)
X - F(al) Y N
) - (1) (e141) yale—\/%y o 69
Y y - 041 F(al) ) y N .

2

—p

Here we have oy = 5.
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Proposition 6.4 The metric tensor [g;;] and its inverse [g*] are as follows :

1-3a; / —ltay
=21 4 ¢ o —T=1
G = [gi] = [ 4a1271ﬂ( 2 g ] : (6.40)
4oy 012 40122
S ET ) - (s )
1 i —14+(1+a1) ¥/ (a1 ay (—1+(1+an) P’ (a1
G =1g"]= ( (~1+on) o1s o12” (1+an (—3+4.01 /() (641
@ <71+<1+a1)w’(a1>>) ar? (—14+(14a1) ¢’ (o))
]
Proposition 6.5 The Christoffel symbols are
o it 44 (1+an) ¥'(en))
1 8ay? (=14 (1+ o) ¢ (ar))
rl, = Il = — ("L o)
12 2 8ay 012 (—1+(1+041) Y’ (1)) ’
o —(+a)
22 80122 (71+(1+051) 1/”(041)) 7
2 _ o2 (Clton (348¢/(an) —4 (-1+ 1) a1 ¥(n))
11 8ar? (—1+ (1+a1) ¢ (o)) ’
e _ At (3+dmy(a)
12 8ai2 (=14 (14 ay) ¢'(aq))’
—8+ —14a4 .
2 _ o (Z1(IFan) ¢'(on)) 6.42
22 8012 ( )
O

Proposition 6.6 The curvature tensor is given by

= (@W(a) + (1 +ar) ¥ (a1))
Rizipa = 60122 (—1+ (1 a1) () (6.43)

while the other independent components are zero.

By contraction we obtain:
Ricci tensor:
Ry — (I+o (=3+4a ¢ (o)) (¥ (oa) + (1 + a1) P" (o))
1601% (—1+ (1+ 1) ¢'(an))? ’
Ry = (—1+01) (@' (on) + 1+ o) (o))
161 019 (=1 + (14 ay) ¥/ (a))®

(1 +a1) (@) + A+ a1) P(a))

Ry = (6.44)
160122 (=1 + (1 + aq) ¥ (a1))?
Scalar curvature:
! 1 1
_ Y'(ar) + (1+a) ¥ (alg . (6.45)
2(=1+ (1 +a1) ¢'(a1))
O
6.3 Submanifold M; C M: o5 =1
Here the distributions have unit covariance and are of form:
(a2) e (y — 2)™ e VA (6.46)

[z, y;a1,1,a0) = T(an)(az) )
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defined on 0 < z < y < oo with parameters a1, as > 0. The correlation coefficient and marginal functions

are given by:

Qg
XY) =
p(X,Y) o
\/701 a;—1 7\/7m
= 0
fx(x) o) , x>
~—(a1+az2)  (aj4as)—1,—\/ary
frly) = Y& Y ‘ , y>0.

F(Oq + ()42)
Proposition 6.7 The metric tensor [gi;] and its inverse [g"] are as follows:

—3011"!‘042 +1/)(041) =1

G — i = 40(1 21
[g J] 2a1 w/(O@)
40412111/(042) 2@1
Gt =[¢gY] = —I4+(aetar (=3+4 a1 P’'(a1))) P’ (a2)  —1+(ae+ar (=3+4 a1 P’ (1)) P’ (a2)

aztag (73+4 a wl(al))

2«
T (eatar (3Hdon P@)) (2] —TH(aaton (=3+dar ¢ (an)) 97(aa)

Proposition 6.8 The Christoffel symbols are
3+ 21/)/(062) (3 o) — 209 + 40&13 1/1”(041))

1
M o (Tt (et o (B3t dan /(an) #(an))
L o ()

22 —1+ (241 (=34+41 ¢ (1)) ¥'(az)’
oo AGP))

12 2T 242 (agtag (—3+4a¢(an))) ¥ (az)’
2. — — + aq (73 + 1219 (a1) + 8ay? 7,/}”(041))

B 8an2 (<1 + (g + a1 (=3 +4a1¢(an))) ¥ (az))’
2 (as+ 01 (=3 +4a1v¢'(a1))) ¥ (as)

22 —2+2 (az+ay (-3+4a19'(ar))) ¥ (as)’

2 2 1
', = I3 =

4oy (=14 (e + a1 (=3+4a1¢' (1)) ¥ (az))

Proposition 6.9 The curvature tensor is given by

71,[)/(042) + (70&2 + a1 (73 + 12 a7 1//(041) + 80[12 ¢N(Oél))) ﬂ)”(OAQ)

Ri212 1612 (=14 (az + a1 (=3 +4a1 ¢/ (ay))) ¥ (az))

while the other independent components are zero.

By contraction we obtain:
Ricci tensor:

(6.47)
(6.48)

(6.49)

(6.50)

(6.51)

(6.52)

(6.53)

(042 4+ aq (—3 +4 o w’(al))) ((—042 —+ o (—3 + 120 1#/(0(1) + 80&12 1#”(0(1))) wﬂ(OéQ))

Ry = 2
—16012 (=1 + (aa + a1 (=3 +4 a1 9/ (1)) ¢/ (a2))
(¢

P'(a2) (g + a1 (=3 +4a19' (1)) (¥'(az))
16012 (—1+ (a2 + oq (=3 +4a1 9 (a1))) ¥/ (a2))?
—¢'(a2) + (—az + a1 (=3+1201 ¢ (a1) +8a1? ¥ (a))) ¢ (a2)
8ay (—1+4 (a2 + a1 (=3 +4a1¢/ (1)) ¥/ (a2))?
Paz) (¥'(az) + (a2 + a1 (3 —4a1 3¢ (1) +2a19"(en)))) ¥"(2))
4(=14+ (s + a1 (-3+4a1 ¢ (an))) w’(ag))

)

)

Ry =

(6.54)
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Figure 5: The scalar curvature R for McKay submanifold Ms, (M with o1 = 1).

Scalar curvature:

Y(az) + (2t B—dar B¢ () +2a19"(en))) ¥ (a2)
2(~1+ (a2 + a1 (=3 +4a1 ¢/ (1)) ¥'(a2))’

R = (6.55)

7 Applications

The univariate gamma information geometry is known and has been applied recently to represent and
metrize departures from randomness of, for example, the processes that allocate gaps between occurrences
of each amino acid along a protein chain within the Saccharomyces cerevisiae genome, see Cai et al [4],
cosmological void distribution and clustering of galaxies, and communications, Dodson [5], [7], [6].

The new results on bivariate gamma geometry have potential applications in any situation where positively
correlated variables 0 < z < y < 0o are used to model a process with marginal gamma distributions. In
some of the applications mentioned above, there are other variables associated and these may yield some
refinements of the existing models. Two new case studies are being developed at present, both involve
bivariate data from measurements on stochastic porous media.

The first application concerns the structure of paper and nonwoven textiles, in the manufacture of which
fibres are deposited on a continuous filter bed and form a near-planar bonded network. In the random
case it is easily seen that the mean number of sides is four for the polygonal voids formed by the fibre
process. The distribution of polygonal void sizes is then given by the direct product of independent
identical exponential distributions—reflecting the Poisson processes for fibre intersections. For isotropic
but non-random manufacturing processes, Dodson and Sampson [9] used the product of two gamma
distributions to obtain the void size distribution, recovering the known random model as a special case.
For some such isotropic materials it may be appropriate to consider correlated polygon sides, since
the voids tend to be ‘roundish’ suggesting positive correlation among polygon sides. Some commercial
processes involve preferential alignment of fibres in the direction of manufacture, resulting in anisotropic
void distributions. In these cases the product of independent gamma distributions needs to be replaced
by the McKay bivariate model and we shall report this study elsewhere.

The second application concerns tomographic images of soil samples in hydrology surveys. Such images
yield 3-dimensional reconstructions of the porous structure and interestingly these generate a bivariate
positively correlated pair of random variables 0 < z < y < oo. Here, the larger variable represents the
size of a void and the smaller variable represents the sizes of the throats that connect it to neighbouring
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voids. This work is being pursued in collaboration with Professor J. Scharkanski of the Federal University
of Rio Grande do Sul, Brazil and will be reported elsewhere [3].

The authors used Mathematica to perform analytic calculations and can make available working notebooks
for others to use.

8 Concluding remarks

We have formalised the concept of a process being ‘nearly random’ by proving that in the subspace
information metric topology of Euclidean R?, every neighbourhood of an exponential distribution contains
a neighbourhood of gamma distributions. Moreover, every neighbourhood of the uniform distribution
contains a neighbourhood of log-gamma distributions.

We have derived the information geometry of the 3-manifold M of McKay bivariate gamma distributions,
which can provide a metrization of departures from randomness and independence for bivariate processes.
Additionally, we give the metric for a 5-manifold version that includes location parameters for the two
random variables. The curvature objects are derived for M and those on three submanifolds that illustrate
some cases of possible practical interest. As in the case of bivariate normal manifolds, we have negative
scalar curvature on the McKay bivariate gamma manifolds, but here it is not constant and we show how it
depends on correlation in two cases. These results have applications, for example, in the characterization
of stochastic materials.
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