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Abstract
The Freund family of distributions becomes a Riemannian 4-manifold with Fisher information

as metric; we derive the induced α-geometry, i.e., the α-curvature, α-Ricci curvature with its
eigenvales and eigenvectors, the α-scalar curvature etc. We show that the Freund manifold has a
positive constant 0-scalar curvature, so geometrically it constitutes part of a sphere. We consider
special cases as submanifolds and discuss their geometrical structures; one submanifold yields
examples of neighbourhoods of the independent case for bivariate distributions having identical
exponential marginals. Thus, since exponential distributions complement Poisson point processes,
we obtain a means to discuss the neighbourhood of independence for random processes.
AMS Subject Classification (2001): 53B1
Key words: Freund bivariate exponential distribution, information geometry, statistical mani-
fold, α-connection

1 Differential geometry of the Freund 4-manifold

In [4] we proved that every neighbourhood of an exponential distribution contains a neighbourhood
of gamma distributions, in the subspace topology of R3 using information geometry and the affine
immersion of Dodson and Matsuzoe [8]. For general references on information geometry, see Amari
et al. [1], [2]. As part of a study of the information geometry of gamma and bivariate stochastic
processes cf. e.g. [5], [6], [7], we have calculated the geometry of the family of Freund bivariate
mixture exponential density functions. The importance of this family lies in the fact that exponential
distributions represent intervals between events for Poisson processes on the real line and Freund
distributions can model bivariate processes with positive and negative covariance. The Freund family
of distributions becomes a Riemannian 4-manifold with the Fisher information metric, and we derive
the induced α-geometry, i.e., the α-Ricci curvature, the α-scalar curvature etc. The case α = 0
recovers the geometry of the metric or Levi Civita connection and we show that the Freund manifold
has a positive constant 0-scalar curvature, so geometrically it constitutes part of a sphere.

1.1 Freund bivariate mixture exponential distributions

Freund [9] introduced a bivariate exponential mixture distribution arising from the following reliability
considerations. Suppose that an instrument has two components A and B with lifetimes X and Y
respectively having density functions (when both components are in operation)
fX(x) = α1 e

−α1x;
fY (y) = α2 e

−α2y

for (α1, α2 > 0;x, y > 0).
Then X and Y are dependent in that a failure of either component changes the parameter of the life
distribution of the other component. Thus when A fails, the parameter for Y becomes β2; when B
fails, the parameter for X becomes β1. There is no other dependence. Hence the joint density function
of X and Y is :

f(x, y) =
{
α1β2e

−β2y−(α1+α2−β2)x for 0 < x < y,
α2β1e

−β1x−(α1+α2−β1)y for 0 < y < x
(1.1)
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where αi, βi > 0 (i = 1, 2).
Provided that α1 + α2 6= β1, the marginal density function of X is

fX(x) =
(

α2

α1 + α2 − β1

)
β1 e

−β1x +
(

α1 − β1

α1 + α2 − β1

)
(α1 + α2) e−(α1+α2)x , x ≥ 0 (1.2)

and provided that α1 + α2 6= β2, The marginal density function of Y is

fY (y) =
(

α1

α1 + α2 − β2

)
β2 e

−β2y +
(

α2 − β2

α1 + α2 − β2

)
(α1 + α2) e−(α1+α2)y , y ≥ 0 (1.3)

We can see that the marginal density functions are not exponential but rather mixtures of exponen-
tial distributions if αi > βi ; otherwise, they are weighted averages. For this reason, this system
of distributions should be termed bivariate mixture exponential distributions rather than simply bi-
variate exponential distributions. The marginal density functions fX(x) and fY (y) are exponential
distributions only in the special case αi = βi (i = 1, 2).
Freund discussed the statistics of the special case when α1 + α2 = β1 = β2, and obtained the joint
density function as:

f(x, y) =
{
α1(α1 + α2)e−(α1+α2)y for 0 < x < y,
α2(α1 + α2)e−(α1+α2)x for 0 < y < x

(1.4)

with marginal density functions:

fX(x) = (α1 + α2(α1 + α2)x) e−(α1+α2)x x ≥ 0 , (1.5)
fY (y) = (α2 + α1(α1 + α2)y) e−(α1+α2)y y ≥ 0 (1.6)

The covariance and correlation coefficient of X and Y were derived by Freund, as follows:

Cov(X,Y ) =
β1 β2 − α1 α2

β1 β2 (α1 + α2)
2 , (1.7)

ρ(X,Y ) =
β1 β2 − α1 α2√

α2
2 + 2α1 α2 + β1

2
√
α1

2 + 2α1 α2 + β2
2

(1.8)

Note that− 1
3 < ρ(X,Y ) < 1. The correlation coefficient ρ(X,Y ) → 1 when β1, β2 → ∞, and

ρ(X,Y ) → − 1
3 when α1 = α2 and β1, β2 → 0. In many applications, βi > αi (i = 1, 2) ( i.e.,

lifetime tends to be shorter when the other component is out of action) ; in such cases the correlation
is positive.

1.2 Fisher information metric

Proposition 1.1 Let F be the set of Freund bivariate mixture exponential distributions, that is

F = {f |f(x, y;α1, β1, α2, β2) =
{
α1β2e

−β2y−(α1+α2−β2)x for 0 ≤ x < y
α2β1e

−β1x−(α1+α2−β1)y for 0 ≤ y ≤ x
, αi, βi > 0 (i, 1, 2)} (1.9)

Then we have :

1. Identifying (α1, β1, α2, β2) as a local coordinate system, F can be regarded as a 4-manifold.

2. F becomes a Riemannian manifold with the Fisher information metric G = [gij ] where

gij =
∫ ∞

0

∫ ∞
0

∂2 log f(x, y)
∂xi∂xj

f(x, y) dx dy

and (x1, x2, x3, x4) = (α1, β1, α2, β2).
is given by :

[gij ] =


1

α12+α1 α2
0 0 0

0 α2
β1

2 (α1+α2)
0 0

0 0 1
α22+α1 α2

0
0 0 0 α1

β2
2 (α1+α2)

 (1.10)
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3. The inverse [gij ] of [gij ] is given by :

[gij ] =


α1

2 + α1 α2 0 0 0
0 β1

2 (α1+α2)
α2

0 0
0 0 α2

2 + α1 α2 0
0 0 0 β2

2 (α1+α2)
α1

 (1.11)

�

1.3 Geometry from the α-connection

We provide the α-connection , and various α-curvature objects of the Freund manifold F : the α-
curvature tensor, the α-Ricci tensor, the α-scalar curvature, the α-sectional curvatures and the α-mean
curvatures.

1. α-connection :

For each α ∈ R, the α (or ∇(α))-connection is the torsion-free affine connection with components:

Γ(α)
ij,k =

∫ ∞
0

∫ ∞
0

(
∂2 log f
∂ξi∂ξj

∂ log f
∂ξk

+
1− α

2
∂ log f
∂ξi

∂ log f
∂ξj

∂ log f
∂ξk

)
f dx dy

Proposition 1.2 The functions Γ(α)
ij,k are given by :

Γ(α)
11,1 =

2 (α− 1) α1 − (1 + α) α2

2α1
2 (α1 + α2)

2 ,

Γ(α)
11,3 =

1 + α

2α1 (α1 + α2)
2 ,

Γ(α)
12,2 =

(α− 1) α2

2 (α1 + α2)
2
β1

2
,

Γ(α)
13,3 =

−1 + α

2α2 (α1 + α2)
2 ,

Γ(α)
14,4 =

− ((α− 1) α2)
2 (α1 + α2)

2
β2

2
,

Γ(α)
22,2 =

(α− 1) α2

(α1 + α2) β1
3 ,

Γ(α)
22,3 =

− ((1 + α) α1)
2 (α1 + α2)

2
β1

2
,

Γ(α)
33,3 =

− ((1 + α) α1) + 2 (−1 + α) α2

2α2
2 (α1 + α2)

2 ,

Γ(α)
34,4 =

(α− 1) α1

2 (α1 + α2)
2
β2

2
,

Γ(α)
44,4 =

(α− 1) α1

(α1 + α2) β2
3 (1.12)

while the other independent components are zero. �

We have an affine connection ∇(α) defined by :

〈∇(α)
∂i
∂j , ∂k〉 = Γ(α)

ij,k ,

So by solving the equations

Γ(α)
ij,k =

4∑
h=1

gkh Γh(α)
ij , (k = 1, 2, 3, 4).
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we obtain the components of ∇(α) :

Proposition 1.3 The components Γi(α)
jk of the ∇(α)-connections are given by :

Γ(α)1
11 =

1
2

(
−1 + α

α1
+
−1 + 3α
α1 + α2

)
,

Γ(α)1
13 = Γ(α)2

12 = Γ(α)3
13 = Γ(α)4

34 =
−1 + α

2 (α1 + α2)
,

Γ(α)1
22 = −Γ(α)3

22 =
(1 + α) α1 α2

2 (α1 + α2) β1
2 ,

Γ(α)1
33 = Γ(α)2

23 =
(1 + α) α1

2α2 (α1 + α2)
,

Γ(α)1
44 = −Γ(α)3

44 =
− ((1 + α) α1 α2)
2 (α1 + α2) β2

2 ,

Γ(α)3
11 = Γ(α)4

14 =
(1 + α) α2

2α1 (α1 + α2)
,

Γ(α)3
33 =

1
2

(
−1 + α

α2
+
−1 + 3α
α1 + α2

)
,

Γ(α)4
44 =

−1 + α

β2
, (1.13)

while the other independent components are zero. �

2. α-Curvatures :

Proposition 1.4 The components R(α)
ijkl of the α-curvature tensor are given by:

R
(α)
1212 = (α2−1)α2

2

4 α1 (α1+α2)
3 β1

2 ,

R
(α)
1223 = (α2−1)α2

4 (α1+α2)
3 β1

2 ,

R
(α)
1414 = (α2−1)α2

4 (α1+α2)
3 β2

2 ,

R
(α)
1434 =

−(α2−1)α1

4 (α1+α2)
3 β2

2 ,

R
(α)
2323 = (α2−1)α1

4 (α1+α2)
3 β1

2 ,

R
(α)
2424 = (α2−1)α1 α2

4 (α1+α2)
2 β1

2 β2
2 ,

R
(α)
3434 = (α2−1)α1

2

4 α2 (α1+α2)
3 β2

2 , (1.14)

while the other independent components are zero. �

Contracting R(α)
ijkl with gil we obtain the components R(α)

jk of the α-Ricci tensor.

Proposition 1.5 The α-Ricci tensor R(α) = [R(α)
ij ] is given by :

R(α) = [R(α)
jk ] =



−(α2−1)α2

2 α1 (α1+α2)
2 0 α2−1

2 (α1+α2)
2 0

0
−(α2−1)α2

2 (α1+α2) β1
2 0 0

α2−1
2 (α1+α2)

2 0
−(α2−1)α1

2 α2 (α1+α2)
2 0

0 0 0
−(α2−1)α1

2 (α1+α2) β2
2

 (1.15)
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The α-eigenvalues and the α-eigenvectors of the α-Ricci tensor are given by :

(
α2 − 1

)


0
1

(α1+α2)
2 − 1

2 α1 α2
−α2

2 (α1+α2) β1
2

−α1
2 (α1+α2) β2

2

 (1.16)


α1
α2

0 1 0
−α2

α1
0 1 0

0 1 0 0
0 0 0 1

 (1.17)

�

Proposition 1.6 The manifold F has a constant α-scalar curvature

R(α) =
−3

(
α2 − 1

)
2

(1.18)

Note that the Freund manifold has a positive scalar curvature R(0) = 3
2 when α = 0. So

geometrically it constitutes part of sphere. �

Proposition 1.7 The α-sectional curvatures %(α)(λ, µ) (λ, µ = 1, 2, 3, 4) are given by :

%(α)(1, 2) = %(α)(1, 4) =

(
1− α2

)
α2

4 (α1 + α2)
,

%(α)(1, 3) = 0,

%(α)(2, 3) =

(
1− α2

)
α1

4 (α1 + α2)
,

%(α)(2, 4) =
1− α2

4
,

%(α)(3, 4) = %(2, 3) . (1.19)

�

Proposition 1.8 The α-mean curvatures %(α)(λ) (λ = 1, 2, 3, 4) are given by :

%(α)(1) =

(
1− α2

)
α2

6 (α1 + α2)
,

%(α)(2) = %(4) =
1− α2

6
,

%(α)(3) =

(
1− α2

)
α1

6 (α1 + α2)
. (1.20)

�

2 Submanifolds of the Freund 4-manifold

We consider five submanifolds Fi (i = 1, 2, 3, 4) of the 4-manifold F of Freund bivariate exponential
distributions f(x, y;α1, β1, α2, β2) (1.1), which includes the case of statistically independent random
variables. It includes also the special case of an Absolutely Continuous Bivariate Exponential Dis-
tribution called ACBED (or ACBVE) by Block and Basu (cf. Hutchinson and Lai [10]). We use
the coordinate system (α1, β1, α2, β2) for the submanifolds Fi (i 6= 3), and the coordinate system
(λ1, λ12, λ2) for ACBED of the Block and Basu case.
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2.1 Submanifold F1 ⊂ F : β1 = α1, β2 = α2

The distributions are of form :

f(x, y;α1, α2) = f1(x;α1)f2(y;α2) (2.21)

where fi are the density functions of the one-dimensional exponential distributions with the param-
eters αi > 0 (i = 1, 2). This is the case for statistical independence of X and Y , so the space
F1 is the direct product of two Riemannian spaces {f1(x;α1) : f1(x;α1) = α1e

−α1x, α1 > 0} and
{f2(y;α2) : f2(y;α2) = −α2e

−α2y, α2 > 0}.

Proposition 2.1 The metric tensor [gij ] is as follows :

[gij ] =

[
1

α2
1

0
0 1

α2
2

]
(2.22)

�

Proposition 2.2 The components of the α-connection are

Γ(α)
11,1 =

α− 1
α1

3
,

Γ(α)
22,2 =

α− 1
α2

3
,

Γ(α)1
11 =

α− 1
α1

,

Γ(α)2
22 =

α− 1
α2

, (2.23)

while the other components are zero. �

Proposition 2.3 The α-curvature tensor, α-Ricci tensor, and α-scalar curvature of F1 are zero. �

2.2 Submanifold F2 ⊂ F : α1 = α2, β1 = β2

The distributions are of form :

f(x, y;α1, β1) =
{
α1β1 e

−β1y−(2 α1−β1)x for 0 < x < y
α1β1 e

−β1x−(2 α1−β1)y for 0 < y < x
(2.24)

with parameters α1, β1 > 0. The covariance, correlation coefficient and marginal density functions, of
X and Y are given by :

Cov(X,Y ) =
1
4

(
1
α1

2
− 1
β1

2

)
, (2.25)

ρ(X,Y ) = 1− 4α1
2

3α1
2 + β1

2 , (2.26)

fX(x) =
(

α1

2α1 − β1

)
β1 e

−β1x +
(
α1 − β1

2α1 − β1

)
(2α1) e−2 α1x , x ≥ 0 , (2.27)

fY (y) =
(

α1

2α1 − β1

)
β1 e

−β1y +
(
α1 − β1

2α1 − β1

)
(2α1) e−2 α1y , y ≥ 0 . (2.28)

Note that ρ(X,Y ) = 0 when α1 = β1.

Note that F2 forms as exponential family, with parameters (α1, β1) and potential function

ψ = − log(α1 β1) (2.29)

Proposition 2.4 The submanifold F2 is an isometric isomorph of a the manifold F1.
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Proof: Since ψ is a potential function, the Fisher metric is given by the Hessian of ψ, that is,

gij =
∂2ψ

∂θi∂θj
. (2.30)

Then, we have the Fisher metric (2.22) by a straightforward calculation. �

2.2.1 Mutually dual foliations:

Since ∇(1)
∂i
∂j = 0, (α1, β1) is a 1-affine coordinate system, and the (-1)-affine coordinate system is

given by:

η1 = − 1
α1
,

η2 = − 1
β1
. (2.31)

These coordinate have potential function:

λ = log(α1 β1)− 2 . (2.32)

So the coordinates (α1, β1) and (− 1
α1
,− 1

β1
) are mutually dual with respect to the Fisher metric, and

the tetrad {F2, g,∇(1),∇(−1)} is dually flat space. Therefore F2 has dually orthogonal foliations.
For example: take (α1, η2) as a coordinate system for F2; then

f(x, y;α1, η2) =

 −α1
η2
e

(
1

η2

)
y−

(
2 α1+

1
η2

)
x for 0 < x < y

−α1
η2
e

(
1

η2

)
x−

(
2 α1+

1
η2

)
y for 0 < y < x

(2.33)

and the Fisher metric is :

[gij ] =

[
− 1

α2
1

0
0 1

(η2)2

]
(2.34)

2.2.2 Neighbourhoods of independence in F2

An important practical application of the Freund submanifold F2 is the representation of a bivariate
stochastic proces for which the marginals are identical exponentials. The next result is important
because it provides topological neighbourhoods of that subspace W in F2 consisting of the bivari-
ate processes that have zero covariance: we obtain neighbourhoods of independence for random (ie
exponentially distributed) processes.

Proposition 2.5 Let {F2, g,∇(1),∇(−1)} be the manifold F2 with Fisher metric g and exponential
connection ∇(1). Then F2 can be realized in Euclidean R3 by the graph of a potential function, namely,
F2 can be realized by the affine immersion {h, ξ}:

h : G → R3 :
(
α1

β1

)
7→

α1

β1

ψ

 , ξ =

 0
0
1

 .

where ψ = − log(α1 β1) and ξ is the transversal vector field along h.
In F2, the submanifold W consisting of the independent case (α1 = β1) is represented by the curve :

(0,∞) → R3 : (α1) 7→ (α1,− log(α1 β1)), ξ = (0, 0, 1).

This is illustrated in the graphic which shows S, an affine embedding of F2 as a surface in R3, and
T an R3-tubular neighbourhood of W , the curve α1 = β1 in the surface. This curve W represents
all bivariate distributions having identical exponential marginals and zero covariance; its tubular
neighourhood T represents departures from independence.
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0
2

4

0
2
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-2

0
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0

2

4

β1

α1

Figure 1: Affine immersion in natural coordinates (α1, β1) as a surface in R3 for the Freund sub-
manifold F2; the tubular neighbourhood surrounds the curve (α1 = β1 in the surface) consisting of all
bivariate distributions having identical exponential marginals and zero covariance.

2.3 Submanifold F3 ⊂ F : β1 = β2 = α1 + α2

The distributions are of form:

f(x, y;α1, α2, β2) =
{
α1 (α1 + α2) e−(α1+α2)y for 0 < x < y
α2 (α1 + α2) e−(α1+α2)x for 0 < y < x

(2.35)

with parameters α1, α2 > 0. The covariance, correlation coefficient and marginal functions, of X and
Y are given by :

Cov(X,Y ) =
α1

2 + α1 α2 + α2
2

(α1 + α2)
4 , (2.36)

ρ(X,Y ) =
α1

2 + α1 α2 + α2
2√

2 (α1 + α2)2 − α1
2
√

2α1
2 + 4α1α2 + α2

2
, (2.37)

fX(x) = (α2 (α1 + α2)x+ α1) e−(α1+α2)x, x ≥ 0 (2.38)
fY (y) = (α1 (α1 + α2)y + α2) e−(α1+α2)y, y ≥ 0 (2.39)

Note that the correlation coefficient is positive.

Proposition 2.6 The metric tensor [gij ] is given by :

[gij ] =

[
α2+2 α1

α1 (α1+α2)
2

1
(α1+α2)

2

1
(α1+α2)

2
α1+2 α2

α2 (α1+α2)
2

]
(2.40)

�
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Proposition 2.7 The components of the α-connection of F3 are

Γ(α)1
11 =

−
(

1+α
α1

)
+ −1+3 α

α1+α2

2
,

Γ(α)1
12 =

−1 + α

2 (α1 + α2)
,

Γ(α)1
22 =

(1 + α) α1

2α2 (α1 + α2)
,

Γ(α)2
11 =

(1 + α) α2

2α1 (α1 + α2)
,

Γ(α)2
22 =

−
(

1+α
α2

)
+ −1+3 α

α1+α2

2
, (2.41)

while the other independent components are zero. �

Proposition 2.8 The α-curvature tensor, α-Ricci curvature, and α-scalar curvature of F3 are zero.

2.4 Submanifold F4 ⊂ F : ACBED of Block and Basu

Consider the distributions are form:

f(x, y;λ1, λ12, λ2) =

{
λ1 λ (λ2+λ12)

λ1+λ2
e−λ1 x−(λ2+λ12) y for 0 < x < y

λ2 λ (λ1+λ12)
λ1+λ2

e−(λ1+λ12) x−λ2 y for 0 < y < x
(2.42)

where the parameters λ1, λ12, λ2 are positive, and λ = λ1 + λ2 + λ12.
This distribution was derived originally by omitting the singular part of the Marshall and Olkin
distribution (cf. [11], page [139]); Block and Basu called it the ACBED to emphasize that they are the
absolutely continuous bivariate exponential distributions. Alternatively, it can be derived by Freund’s
method (1.1), with

α1 = λ1 +
λ1 λ12

(λ1 + λ2)
,

β1 = λ1 + λ12,

α2 = λ2 +
λ2 λ12

(λ1 + λ2)
,

β2 = λ2 + λ12.,

By substitutions we obtained the covariance, correlation coefficient and marginal functions:

Cov(X,Y ) =
(λ1 + λ2)

2 (λ1 + λ12) (λ2 + λ12)− λ2 λ1 λ2

λ2 (λ1 + λ2)
2 (λ1 + λ12) (λ2 + λ12)

, (2.43)

ρ(X,Y ) =
(λ1 + λ2)

2 (λ1 + λ12) (λ2 + λ12)− λ2 λ1 λ2√∏2
i=1, j 6=i

(
(λ1 + λ2)

2(λi + λ12)
2 + λjλ2 (λj + 2λi)

) , (2.44)

fX(x) =
(

−λ12

λ1 + λ2

)
λ e−λ x +

(
λ

λ1 + λ2

)
(λ1 + λ12) e−(λ1+λ12) x, x ≥ 0 (2.45)

fY (y) =
(

−λ12

λ1 + λ2

)
λ e−λ y +

(
λ

λ1 + λ2

)
(λ2 + λ12) e−(λ2+λ12) y, y ≥ 0 (2.46)

Note that the correlation coefficient is positive, and the marginal functions are a negative mixture of
two exponentials.
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Proposition 2.9 The metric tensor [gij ] using the coordinate system (λ1, λ12, λ2) is as follows:

[gij ] =


λ2

(
1

λ1
+

λ1+λ2
(λ1+λ12)2

)
(λ1+λ2)

2 + 1
λ2

λ2
(λ1+λ2) (λ1+λ12)

2 + 1
λ2

−1
(λ1+λ2)

2 + 1
λ2

λ2
(λ1+λ2) (λ1+λ12)

2 + 1
λ2

λ2
(λ1+λ12)2

+
λ1

(λ2+λ12)2

λ1+λ2
+ 1

λ2
λ1

(λ1+λ2) (λ2+λ12)
2 + 1

λ2

−1
(λ1+λ2)

2 + 1
λ2

λ1
(λ1+λ2) (λ2+λ12)

2 + 1
λ2

λ1

(
1

λ2
+

λ1+λ2
(λ2+λ12)2

)
(λ1+λ2)

2 + 1
λ2

 (2.47)

�

The Christoffel symbols, curvature tensor, Ricci tensor, scalar curvature, sectional curvatures and the
mean curvatures were computed but are not listed because they are somewhat cumbersome.

In the case when λ1 = λ2, this family of distributions becomes

f(x, y;λ1, λ12) =

{
(2 λ1+λ12) (λ1+λ12)

2 e−λ1 x−(λ1+λ12) y for 0 < x < y
(2 λ1+λ12) (λ1+λ12)

2 e−λ1 y−(λ1+λ12) x for 0 < y < x
(2.48)

which is an exponential family with natural parameters (θ1, θ2) = (λ1, λ12) and potential function
ψ(θ) = log(2) − log(λ1 + λ12) − log(2λ1 + λ12), note that from equations (2.45, 2.46), this family of
distributions has an identical marginal density functions.
So it would be easy to derive the α -geometry, for example:

The metric tensor [gij ] is as follows:

[gij ] =

[
1

(λ1+λ12)
2 + 4

(2 λ1+λ12)
2

1
(λ1+λ12)

2 + 2
(2 λ1+λ12)

2

1
(λ1+λ12)

2 + 2
(2 λ1+λ12)

2
1

(λ1+λ12)
2 + 1

(2 λ1+λ12)
2

]
(2.49)

By direct calculation the functions Γ(α)
ij,k = 1−α

2 ∂i ∂j ∂kψ(θ); are given by:

Γ(α)
11,1 = (1− α)

(
−1

(λ1 + λ12)
3 −

8
(2λ1 + λ12)

3

)
,

Γ(α)
11,2 = (1− α)

(
−1

(λ1 + λ12)
3 −

4
(2λ1 + λ12)

3

)
,

Γ(α)
12,2 = (1− α)

(
−1

(λ1 + λ12)
3 −

2
(2λ1 + λ12)

3

)
,

Γ(α)
22,2 = (1− α)

(
−1

(λ1 + λ12)
3 −

1
(2λ1 + λ12)

3

)
. (2.50)

By solving the equations

Γ(α)
ij,k =

3∑
h=1

gkh Γh(α)
ij , (k = 1, 2)

we obtain the components of ∇(α) as follows:

Γ(α)1 = [Γ(α)1
ij ] =

[
1−α

λ1+λ12
+ 4 (α−1)

2 λ1+λ12

(α−1) λ12
(λ1+λ12) (2 λ1+λ12)

(α−1) λ12
(λ1+λ12) (2 λ1+λ12)

−(α−1) λ1
(λ1+λ12) (2 λ1+λ12)

]
,

Γ(α)2 = [Γ(α)2
ij ] =

[ −2 (α−1) λ12
(λ1+λ12) (2 λ1+λ12)

2 (α−1) λ1
(λ1+λ12) (2 λ1+λ12)

2 (α−1) λ1
(λ1+λ12) (2 λ1+λ12)

2 (α−1)
λ1+λ12

+ 1−α
2 λ1+λ12

]
.
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In this case, the α-curvature tensor, α-Ricci curvature, and α-scalar curvature are zero.

In addition, since the coordinates (λ1, λ12) is a 1-affine coordinate system, then (-1)-affine coordinate
system is

(η1, η2) = (− 1
λ1 + λ12

− 1
λ1 + 2λ12

,− 1
λ1 + λ12

− 1
2λ1 + λ12

)

with potential function

λ = −2− log(2) + log(2λ1 + λ12) + log(λ1 + λ12).

3 Freund bivariate mixture log-exponential distributions

In this section we introduce a Freund bivariate mixture log-exponential distribution which has mixture
log-exponential marginal functions, and discus their properties.
The Freund bivariate mixture log-exponential distributions arise from the Freund distributions (1.1)for
the non-negative random variables x = log 1

n and y = log 1
m , or equivalently, n = e−x and m = e−y.

So the Freund log-exponential distributions are given by:

g(n,m) =
{
α1 β2m

(β2−1) n(α1+α2−β2−1) for 0 < m < n < 1,
α2 β1 n

(β1−1)m(α1+α2−β1−1) for 0 < n < m < 1
(3.51)

where αi, βi > 0 (i = 1, 2). The covariance, and marginal density functions, of n and m are given
by:

Cov(n,m) =
α2 (− (α1 (2 + α1 + α2)) + β1) + (α1 + (α1 + α2) β1) β2

(1 + α1 + α2)
2 (2 + α1 + α2) (1 + β1) (1 + β2)

, (3.52)

gN (n) =
(

α2

α1 + α2 − β1

)
β1n

β1−1 +
(

α1 − β1

α1 + α2 − β1

)
(α1 + α2)n(α1+α2)−1 , (3.53)

gM (m) =
(

α1

α1 + α2 − β2

)
β2m

β2−1 +
(

α2 − β2

α1 + α2 − β2

)
(α1 + α2)m(α1+α2)−1 . (3.54)

Note that the marginal functions are mixture log-exponential distributions. Directly from the defini-
tion of the Fisher metric we deduce:

Proposition 3.1 The family of Freund bivariate mixture log-exponential distributions for random
variables n,m determines a Riemannian 4-manifold which is an isometric isomorph of the Freund
4-manifold .

4 Concluding remarks

We have derived the information geometry of the 4-manifold of Freund bivariate mixture exponential
distributions, which admits positive and negative covariance. The curvature objects are derived and so
also are those on four submanifolds, including the case of statistically independent random variables,
and the special case ACBED of Block and Basu. We use one submanifold to provide examples
of neighbourhoods of the independent case for bivariate distributions having identical exponential
marginals. Thus, since exponential distributions complement Poisson point processes, we obtain a
means to discuss the neighbourhood of independence for random processes in general. The Freund
manifold has a constant 0-scalar curvature, so geometrically it constitutes part of a sphere.
The authors used Mathematica to perform analytic calculations [3], and can make available working
notebooks for others to use.
Acknowledgment:The authors wish to thank the referees for suggestiog improvements and the
Libyan Ministry of Education for a scholarship for Arwini.
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