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ABSTRACT

The Neyman-Scott process is adapted to the problem of simulating the statistical properties of stratified stochastic fibrous materials. The simulations suggest a relationship between mean number of fibers per zone and mean voids, independent of the nature of the stochastic fibrous structure: the characteristic shape of the transfer function curve persists whether the structure contains crimped fibers or not, if it is random or flocculated, isotropic or anisotropic; this could be an important universal effect. 
The mean and standard deviation turn out to be positively correlated for some fiber network parameters, such as mean voids, fiber density, and mean number of fiber bounds (i.e. fiber contacts). Also, our simulations suggest that fiber crimp has a higher impact on isotropic structures. As crimp is increased, isotropic structures tend to present smaller mean voids, higher mean number of fibers per zone, and higher total number of bonds per fiber, than anisotropic structures.

1. INTRODUCTION
The relationship between fiber properties and void space in stochastic fiber network structures is complex, and has defied several attempts over the years to be accurately modeled in the case of nonwoven fabrics. For example, it is known that considering a given fabric density and structure, smaller pores, better barrier properties and higher flexibility can be obtained utilizing smaller fibers (Kim et al., 2000). However, fiber crimp and fiber orientation also can affect the fabric pore size distribution, and at the same time it influences the number of fiber-to-fiber contacts and hence mechanical properties. Certainly, fiber-to-fiber contacts and fiber orientation play a crucial role in determining the physical behavior of nonwoven fabrics. These properties affect the fluid transportation pattern within the fabric, its mechanical properties, surface appearance and hand (Gong et al., 1996).  Besides, fiber crimp may affect local fiber density, as we will  discuss later in this work. Therefore, fiber network properties are interrelated in a complex way. Such phenomena is usually difficult to measure experimentally, or it might be costly to acquire sufficient experimental data. Under these circumstances, computer simulation may help clarify such intricate behavior, as we show later.

Recently, Kim and Pourdeyhimi (Kim et al., 2000) discovered a relationship that exists in random fiber networks between the properties of fiber crimp and orientation. However, real fiber networks are flocculated (i.e. clumped) and not random (Deng et al.,1994) (Dodson et al.,1997), and their results need to be extended to this case. Also, it is consensual that network properties such as the density of fiber-to-fiber contacts are intrinsic to fiber networks (Deng et al.,1994), however this property is difficult to measure experimentally, and it has been neglected in previous works reported in the literature.  In this article, we approach these relevant issues.

Both meltblown and spunbonded fabrics are stratified stochastic (i.e. multiplanar) fibrous materials, with little or no order or orientation through the thickness. Published work on modeling and simulation of stratified stochastic porous media tends to use a one-dimensional structure representation (Scharcanski et al., 1998),  or a random aggregation process involving extended geometric objects (e.g. disks) (Deng et al.,1994) to limit computation costs. Recently, some analytical models of pore size distributions in multiplanar stochastic porous media have been proposed (Dodson et al.,1997). We consider pores as two-dimensional entities (Kim et al., 2000).

This work adapts a stochastic model, the Neyman-Scott (NS) process (Neyman and Scott, 1958, 1972), to the problem of modeling the statistical properties of stratified materials composed of fibers. Although widely studied (Cox and Isham, 1980), we are not aware that the NS has been used in this context. We use NS as a device for simulating  the distribution of fibers in a single or multi-planar network forming a network of inter-connecting pores, thereby deducing properties of the interconnecting pore network from the simulated structures; but as explained above it can also be adapted to the modeling of pores directly if their distributions of size and shape are given. This approach is dealt with in a separate paper.

2. SPATIAL FIBER DISTRIBUTION IN STRATIFIED STOCHASTIC FIBER NETWORKS 
Several attempts have been made to model different aspects of  the spatial fiber distribution and the void structure in stratified  fiber networks. Most models have focussed on specific issues such as the void size distribution (Dodson et al.,2000; Dodson et al., 1997), adjacent inter-fiber distances (Dodson et al., 1994), or the spatial distribution of fiber density (Dodson et al., 1994). Usually, such models are used to predict particular structural properties (e.g. void size distribution), given the information known a priori about other, related, properties  (e.g. deviation from randomness of the spatial distribution of fiber density). 

Fiber networks result from the stochastic spatial deposition of fibers, and the fiber deposition process is well described by a homogeneous Poisson process (Dodson et al., 1994) when fibers are positioned completely at random. However, complete randomness is the ideal, and in practice fiber networks deviate significantly from a Poisson process (Dodson et al., 1997); in industrial fibrous materials, mean fiber density often varies spatially and fibers form clusters. The NS process used in our work is a spatial clustering process describing the spatial occurrences of fiber groupings (i.e. fiber clusters) (Cressie, 1993).  Such clusters are generated by a spatial point process having parameters that control the deposition of fibers within each cluster, as described below. 
As mentioned above, some aspects of the fiber and void structure have already been reported elsewhere. Consequently, it is our concern that our simulation model generate structures that are compatible with those found in practice, whilst any new model that is proposed must retain those features of earlier models that are known to be consistent with reality, whilst improving, where possible, on those aspects where existing models are less satisfactory. 

Statistical properties of the NS process, originally proposed as a model of  galaxy clusters in cosmology, have been described by Cox and Isham (1980) and Cressie (1993) among others. It can be used either (a) to model voids of given shape and size distributions occurring in different layers of a multi-layer structure, so as to allow for correlation between void position and size in different layers, or (b) as in the application described below, to model fiber position and orientation.  For this second application, the structure of the NS process is as follows.

1. A set of N parent events (i.e. cluster centroids) is realized from a Poisson process (in its most general form, not necessarily  homogeneous) with mean (i.e. density) fibre_density. 

2. Each parent produces a random number k of offspring, according to a discrete probability distribution p(K=k). Each offspring corresponds to a fiber. A simple form for p(K=k) is the Poisson distribution, either truncated (K>0) or untruncated (K( 0); other discrete distributions are also possible.

3. The locations of the k offspring, relative to their parent, are the points (xi, yi), i=1...k, where the coordinates xi, yi are realizations of random variables having a bivariate, continuous probability distribution f(x, y). Relative to the parent event, each pair of coordinates defines the midpoint of a fiber. A particularly simple model is obtained by taking f(x, y) to be bivariate  Normal with zero correlation, with deviations along the axes x and y given by (x and (y respectively; a further simplification takes  (x = (y , giving circular symmetry of fiber mid-points about the parent event. With (x and (y unequal, fiber mid-points are distributed anisotropically.

4. Each offspring is a fiber of length L, where L is a random variable with continuous distribution defined on the interval [0, 
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). In our simulations, the distribution of L was taken as the lognormal probability distribution with parameters (l , (l2.

5. The orientation  ( of each fiber is a realization of a random variable with distribution defined over the interval [0, 
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(a+b) ] and variance ab/[(2(a+b)2(a+b+1)]. Many types of anisotropy in  fiber orientation can be modeled by the beta distribution; it is triangular when a+b=3, a=1or 2; symmetric about (/2 when a=b; U-shaped if a
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1; J-shaped if a<1 and b>1 or if a>1 and b<1. It is unimodal and bell-shaped (generally skew) when a>1, b>1.

6. The final realization is composed of the superposition of offspring only.

In our model, at each layer, the incidence of parent events within a zone is considered to be a  Poisson process such that its probability density is (Stoyan et al. 1995)(Dodson et al.,2000):

p(N=n) = (
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n =0, 1....

where n is the number of parent events in a zone of area S and (  is the mean number of parent events per unit area. 

We use a multi-planar model with layers of fibers. In this work, we assume that layers are independent (although as noted above, the NS process can be used to model the correlation between pore positions in different layers). Given a simulated multi-layer void structure, structural properties can be evaluated, such as the spatial density distribution of matter and voids, and properties of the network of communicating pores.

2.1 MODELLING FIBER CRIMP 

One of the simulation parameters is the degree of fiber crimp k=P/L, which is defined as the ratio between the fiber perimeter P, and the end to end distance, or length L of each fiber. Therefore, fiber crimp k > 1 implies that fiber perimeter P is larger than fiber length L, and that the fiber is not straight. Given a step p, fiber crimp is then simulated as if the fiber was folded in n=L/p pieces, and each piece is an isosceles triangle with height a=kp/2, and angle t=cos-1(p/(2a)) to the base. 

3. SIMULATION OF NEYMAN-SCOTT PROCESSES

The first requirement is to obtain realizations of the spatial distribution of parent events with parameter (; for simplicity, we assume that ( is constant. In a spatial region with area A, the number N of parent events in A has a Poisson distribution p(N=n) = ((A)n exp((A)/n! and the n events form an independent random sample from the uniform distribution over A . Ripley (1983) states that care must be taken when choosing the pseudo-random number generator, since although most generators will yield a uniform distribution over the interval (0, 1), many will yield quite regular patterns on the unit square (Cressie, 1993). If A is a rectangle of dimension (0, a1)((0, a2), Lewis and Shedler (1979) recommend that the x-co-ordinates of events located in (0, ()((0, a2) be generated from a Poisson process with intensity (.a2, such that the distances between the x-co-ordinates of the parent events are exponentially-distributed with parameter (.a2 (i.e., a pseudo-random variable u is generated from a uniform distribution over (0,1), and the exponential pseudo-random variable is obtained from the transformation v= - log(u)/( (.a2)  ).  The variables v1, v1+v2, v1+v2+v3,...  define the x-coordinates, the process stopping  when the sum exceeds the upper x-limit a1 , thus determining the value of n, the number of parent events for the simulation run. Having generated the x-coordinates in this way, the y-coordinates, n in number, are obtained by generating uniformly-distributed pseudo-random numbers over the interval (0, a2).

Having generated the positions of the parent events, the next step is to generated the k offspring from the discrete distribution pK(k), k=0,1,2,... . An important point to bear in mind when generating the positions of the offspring is that the area of interest A must be embedded within a larger area, such that the offspring from parent events generated in this larger area but which lie outside A, may fall within it. Failure to take this precaution may introduce appreciable bias from the edge effect.

Generation of fiber lengths from a log-Normal distribution, and of fiber orientations from a beta distribution, present no particular problems.

4. EXPERIMENTAL RESULTS AND DISCUSSION 

To illustrate the performance of our simulation procedure, several simulated samples were generated with different conditions of anisotropy, fiber crimp, fiber clumping, and fiber spatial density. Simulation may help  to understand phenomena that would otherwise be costly or difficult to measure. From the analysis of these structures we may learn, for example, how to model different aspects of their structure, such as the existing relationship between fiber crimp, fiber bonding and void structure, or the effect of different parameters on the final void structure.

Figures 1 (a), (b), (c) and (d) show some simulated crimp fiber networks. Usually, in papermaking mean fiber length ranges from 1.5 – 6 mm (Smook, 1994). In our experiments we utilize short fibers, i.e. mean fiber length of 2 mm, and standard deviation of  0.5 mm. The fiber density of the simulated samples in Figure 1 vary from 15 – 70 fibers per mm2.  The area represented in those images corresponds approximately to 100 mm2. Notice that Figures 1(a) and (b) show random isotropic and anisotropic simulated samples with 20 fibers per mm2, and k=1.35.  Figures 1(c) and (d) show the polar plots obtained for those samples, using the technique proposed in (Scharcanski et. al., 1996), indicating that the sample shown in Figure 1(a) is in fact nearly isotropic (i.e. e=1.30), while the sample shown in Figure 1(b) is anisotropic (i.e. e=2.33).

Both samples were simulated with the same fiber density and fiber length distributions. Nevertheless, we used (x=4 mm and (y=4 mm to generate the nearly random sample. For image analysis purposes, the simulated images were sub-divided into approximately 200 x 200 square blocks, namely, pixels (i.e. each pixel is 25 x 10 –4 mm2), and after that, the fiber density (i.e. pixels occupied by fibers) as well as void areas (i.e. pixels not occupied by fibers) were computed. 

Figures 2 and 3 show logarithmic scale plots of the mean versus the standard deviation of voids and fiber density distributions for a wide range of structures (i.e. random and flocculated, isotropic and anisotropic). The observation of those plots indicate that, in general, mean and standard deviation of voids, as well as of fiber density, are correlated (Dodson et al., 1999).  Also, a similar conclusion may be derived about the number of contacts per fiber from Figure 6. In other words, within a wide range of structures (random and flocculated, isotropic and anisotropic), the mean and the standard deviation of the number of contacts per fiber are not independent, but are in fact correlated variables.

The analysis of Figures 4 and 5 provides some insight into the effect of increasing the number of fibers per zone, on the number of fiber contacts (i.e. number of fiber bounds). It is shown that the number of fibers per zone may be increased by varying different parameters independently, such as: increasing fiber density, increasing fiber clumping, or even by decreasing anisotropy. Figure 5 shows that the mean number of fibers at bonds increases when the number of fibers per zone is increased. However, Figure 4 shows that the total number of bonds per fiber (i.e. fiber contacts), follows a different trend, and is not substantially affected by the increase in the number of fibers per zone. Actually, a better response in terms of increasing the total number of bonds per fiber can be obtained by increasing fiber crimp, as we discuss next.

The effect of fiber crimp on several fiber network properties is shown in Figures 8, 9 and 10. In general, increasing fiber crimp, also increases the mean number of fibers per zone, and more interestingly, it increases substantially the total number of bonds per fiber (if compared to the effect of increasing fiber density with fiber crimp constant).  On the other hand, mean voids tend to decrease when fiber crimp is increased. Fiber crimp has a higher impact on isotropic structures, than on anisotropic structures. As crimp is increased, isotropic structures tend to present smaller mean voids, higher mean number of fibers per zone, and higher total number of bonds per fiber, than anisotropic structures.

It is also relevant to observe the existing relationship between mean number of fibers per zone and mean voids in Figure 7. For a wide range of structures (random and flocculated, isotropic and anisotropic, with various degrees of crimp), the shape of the curve shown in Figure 7(a) is similar to that found experimentally by Bliesner, shown in Figure 7(b)  (Bliesner, 1964). Therefore, we may conclude that such relationship is independent of the nature of the stochastic fibrous structure, i.e. the shape of the curve is the same if the structure contains crimp fibers or not, if it is random of flocculated, isotropic or anisotropic. 

5. CONCLUDING REMARKS

The simulation procedure proposed in this paper extends previous work reported in the literature, in order to include the effects of anisotropy, fiber crimp, fiber clumping, and some porous media structural elements. Based on our results, we may conclude that our simulation procedure provides sufficient flexibility to model several conditions occurring in practice. Also, our simulated data show that some models reported in the literature for void size distributions, fiber contacts, fiber density and their relationship with fiber crimp, either in isotropic or anisotropic structures, need to be revised. Moreover,  new process control instruments could be devised to exploit our methods and results. 

We have verified through computer simulation that mean and standard deviation are correlated for some fiber network parameters, such as mean voids, fiber density, and mean number of fiber bounds (i.e. fiber contacts). Therefore, increasing (or decreasing) their mean also increases (or decreases) their variability. Also, our simulations suggest that fiber crimp has a higher impact on isotropic structures. As crimp is increased, isotropic structures tend to present smaller mean voids, higher mean number of fibers per zone, and higher total number of bonds per fiber, than anisotropic structures. It is also important to mention that our simulations also suggest a relationship between mean number of fibers per zone and mean voids, independent of the nature of the stochastic fibrous structure. In other words, the shape of the transfer function curve will be the same, even if the structure contains crimped fibers or not, if it is random or flocculated, isotropic or anisotropic; this could be an important universal effect. 

Future work, will further investigate the transport properties through the voids in a stochastic fibrous matrix (isotropic or anisotropic), model its structural elements such as constrictions (i.e. throats) and pore connectivity (i.e. coordination numbers), as well as comparing the results of our simulations to experimental data. Possible applications of our simulation to instrument design, and industrial process control, will also be reported.
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Figure 8. Relationship between the mean number of contacts per fiber and fiber crimp. For crimp increasing from k=1.0 to k=4.0: local statistics for isotropic samples: random data are displayed as squares and flocculated data are displayed as x-marks; local statistics for anisotropic samples: random data are displayed as hexagram, and flocculated data are displayed as points. In general, higher fiber crimp implies higher mean number of contacts per fiber.
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Figure 1: Simulated isotropic and anisotropic random samples (crimp k=1.35, fiber density 20 fibers/mm2 ): (a)     isotropic network; (b) anisotropic network; (c) polar plot of the isotropic fiber network; (d) polar plot of the anisotropic fiber network.
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Figure 10. Relationship between the mean voids and fiber crimp. For crimp increasing from k=1.0 to k=4.0: local statistics for isotropic samples: random data are displayed as squares and flocculated data are displayed as x-marks; local statistics for anisotropic samples: random data are displayed as hexagram, and flocculated data are displayed as points. In general, higher fiber crimp implies in smaller mean voids. Fiber crimp has a higher impact on isotropic structures, than on anisotropic structures. Also, isotropic structures tend to present the smaller mean voids as crimp is increased.








Figure 9. Relationship between the mean number of fiber per zone and fiber crimp. For crimp increasing from k=1.0 to k=4.0: local statistics for isotropic samples: random data are displayed as squares and flocculated data are displayed as x-marks; local statistics for anisotropic samples: random data are displayed as hexagram, and flocculated data are displayed as points. In general, higher fiber crimp implies in higher mean number of fibers per zone. Fiber crimp has a higher impact on isotropic structures, than on anisotropic structures. Also, isotropic structures tend to present higher mean number of fibers per zone, as crimp is increased.
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Figure 3: Logarithmic relationship between mean number of fibers per zone (i.e. fiber density) and number of fibers per zone standard deviation for random and flocculated (isotropic), as well as random anisotropic samples (crimp k=1.35, fiber density 20 fibers/mm2 ). Local statistics of random samples as fiber density is increased are displayed as crosses (higher densities, larger mean local mass). Local statistics of flocculated samples as fiber clumping is increasing are displayed as circles (higher fiber clumping, larger mean local mass). Local statistics of anisotropic samples as anisotropy is increasing are displayed as triangles (higher anisotropy, higher mean local mass).








Figure 6: Logarithmic relationship between mean number of contacts per fibers and  number of contacts per fiber standard deviation for random and flocculated, isotropic and anisotropic samples, with varying the degree of crimp and fiber clumping (crimp k=1.35, fiber density 20 fibers/mm2 ). Local statistics of random samples as fiber density is increased are displayed as crosses (higher fiber densities, higher mean number of fiber crossings); local statistics of flocculated samples as fiber clumping is increasing are displayed as circles (higher fiber clumping, higher mean number of fiber crossings); local statistics of anisotropic samples as anisotropy is increasing are displayed as triangles (higher fiber desnsities, smaller mean number of fiber crossings). 








Figure 5: Logarithmic relationship between mean number of fibers per zone (i.e. fiber density) and mean number of fibers per fiber crossing for random and flocculated (isotropic), as well as random anisotropic samples (crimp k=1.35, fiber density 20 fibers/mm2 ). Local statistics of random samples as fiber density is increased are displayed as crosses (higher densities, larger mean number of fiber crossings). Local statistics of flocculated samples as fiber clumping is increasing are displayed as circles (higher fiber clumping, larger mean number of fiber crossings). Local statistics of anisotropic samples as anisotropy is increasing are displayed as triangles (higher anisotropy, smaller mean number of fiber crossings).








Figure 2: Logarithmic relationship between mean voids and void standard deviation for random and flocculated (isotropic), as well as random anisotropic samples (crimp k=1.35, fiber density 20 fibers/mm2 ). Void statistics of random samples as fiber density is increased are displayed as crosses (higher densities, smaller mean voids). Void statistics of flocculated samples as fiber clumping is increasing are displayed as  circles (higher fiber clumping, smaller mean voids). Void statistics of  anisotropic samples as anisotropy is increasing are displayed as triangles (higher anisotropy, smaller mean voids).











Figure 4: Logarithmic relationship between mean number of fibers per zone (i.e. fiber density) and mean number of contacts per fiber for random and flocculated, isotropic and anisotropic samples, with varying the degree of crimp and fiber clumping. For constant crimp k=1.35 : local statistics of random samples as fiber density is increased are displayed as crosses; local statistics of flocculated samples as fiber clumping is increasing are displayed as circles; local statistics of anisotropic samples as anisotropy is increasing are displayed as triangles. For crimp increasing from k=1.0 to k=4.0 :  local statistics for isotropic samples: random data are displayed as squares and flocculated data are displayed as x-marks; local statistics for anisotropic samples: random data are displayed as hexagram, and flocculated data are displayed as points.  In general, mean number of contacts per fiber appears to not be significantly correlated with mean number of fibers per zone.








Figure 7. Relationship between the means of local mass (i.e. fiber density) and mean voids in (a) For constant crimp k=1.35 : local statistics of random samples as fiber density is increased are displayed as crosses; local statistics of flocculated samples as fiber clumping is increasing are displayed as circles; local statistics of anisotropic samples as anisotropy is increasing are displayed as triangles. For crimp increasing from k=1.0 to k=4.0 :  local statistics for isotropic samples: random data are displayed as squares and flocculated data are displayed as x-marks; local statistics for anisotropic samples: random data are displayed as hexagram, and flocculated data are displayed as points; and (b) experimental data (Bliesner, 1964).
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