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Abstract

This study elaborates some examples of a simple evolutionary stochastic rate process where
the population rate of change depends on the distribution of properties—so different cohorts
change at different rates. We investigate the effect on the evolution arising from parametrized
perturbations of uniformity for the initial inhomogeneity. The information geometric neigh-
bourhood system yields also solutions for a wide range of other initial inhomogeneity distri-
butions, including approximations to truncated Gaussians of arbitrarily small variance and
distributions with pronounced extreme values. It is found that, under quite considerable al-
terations in the shape and variance of the initial distribution of inhomogeneity in unfitness,
the decline of the mean does change markedly with the variation in starting conditions, but
the net population evolution seems surprisingly stable.
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1 Introduction

Consider a population with an inhomogeneous property distribution faced with a sudden environ-
mental change at t = 0 and let N(t) represent the declining population of more unfit individuals.
In our example the distribution of unfitness a will lie in the range (0, 1] and under selective evolu-
tion the fraction N(t) could consist of individuals with unfitness below some threshold value which
itself may evolve. However, as N(t) evolves we expect the distribution of unfitness to become
skewed increasigly towards smaller values, so improving population fitness. We make use of exist-
ing inhomogeneous stochastic rate process theory [9, 10], and information geometry, [1, 2, 5, 6].
In the example we elaborate, the inhomogeneous population N is classified by a smooth family
of probability density functions {Pt, t ≥ 0} with random variable 0 ≤ a ≤ 1, having mean Et(a)
and variance σ2

t (a) = Et(a
2) − (Et(a))2. Here a represents an unfitness that controls the decline

in the frequency of the a-cohort, so we could view fitness as the variable 1− a. The model can be
reformulated for a vector (N i(t)) representing a composite population with a vector of distributions
(P it ) and a matrix of fitness variables [aij ].

Let lt(a) represent the frequency at the a-cohort, then we have

N(t) =

∫ ∞
0

lt(a) da and Pt(a) =
lt(a)

N(t)
(1)

dlt(a)

dt
= −alt(a) so lt(a) = l0(a)e−at (2)
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2 Inhomogeneous evolution from a neighbourhood of uniform fitness

Central mean P0(a, ν, τ)

τ

Unfitness a

Figure 1: The log-gamma family of probability densities P0(a, ν, τ) from (11) as a surface for the
case of central mean E0(a) = 1

2 . This symmetric surface coincides with the uniform density 1 at
τ = 1, and tends to the delta function as τ →∞

Karev [9] obtained general solutions for these equations giving us

N(t) = N(0)L0(t) where L0(t) =

∫ ∞
0

P0(a)e−at da (3)

dN

dt
= −Et(a)N where Et(a) =

∫ ∞
0

aPt(a) da = −d logL0

dt
(4)

dEt(a)

dt
= −σ2

t (a) = (Et(a))2 − Et(a2) (5)

Pt(a) = e−at
P0(a)

L0(t)
and lt(a) = e−atL0(t) (6)

dPt(a)

dt
= Pt(a)(Et(a)− a). (7)

Here L0(t) is the Laplace transform of the initial probability density function P0(a) (which is of
course zero outside (0, 1]) and so conversely P0(a) is the inverse Laplace transform of the population

(monotonic) decay solution N(t)
N(0) . See Feller [7] for more discussion of the existence and uniqueness

properties of the correspondence between probability densities and their Laplace transforms. We
see from (7) that when the unfitness a exceeds its mean Et(a) then the population density of that
cohort declines and conversely the densities of cohorts with a < Et(a) tend to grow. The Shannon
entropy at time t is

St = −Et (logPt(a)) = −Et
(

log
P0(a)e−at

L0(t)

)
(8)

which reduces to
St = S0 + logL0(t) + Et(a) t. (9)

By using dEt
dt = −σ2

t (a), the decay rate is then

dSt
dt

= −σ2(t) t. (10)

This shows how the variance controls the entropy change during quite general inhomogeneous
population processes, as we saw in [6]. The system

Karev gave the particular solutions for the cases of initial densities that were Poisson, gamma
or uniform. In [6] we studied the case of a bivariate gamma density for an epidemic situation. Here
we shall study a family of log-gamma densities that determine a neighbourhood of the uniform
distribution [2], so recovering the solution of Karev for the uniform distribution as a special case



C.T.J. Dodson 3

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0P0(a)
τ < 1

τ < 1

τ > 1

Unfitness a

Figure 2: Log-gamma probability density functions P0(a) from (11) for a ∈ (0, 1], with central mean
E0(a) = 1

2 , and τ from 0.2 to 2 in steps of 0.2. Note that the parameter τ controls the shape of the
graph and for τ = 1 we have P0(a) = 1.
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Figure 3: Mean and variance for the log-gamma family.

(ν = τ = 1). The log-gamma family contains also close approximations to Gaussians of arbitrarily
small variance truncated to (0, 1] (for τ > 1) as well as densities having outlier cohorts of extreme
values that are enhanced (τ < 1), Figure 1.

2 Evolution of inhomogeneity from an initial log-gamma
probability density

We studied in [2] the smooth family of log-gamma distributions and their information geometry.
This family has probability density function

P0(a, ν, τ) =
aν−1ντ

∣∣log
(
1
a

)∣∣τ−1
Γ(τ)

(11)

for random variable a ∈ (0, 1] and parameters ν, τ > 0. The mean and variance, Figure 3, are given
by

E0(a) =

(
ν

1 + ν

)τ
(12)

σ2
0(a) =

(
ν

ν + 2

)τ
−
(

ν

1 + ν

)2τ

. (13)

The locus in this family of those with central mean E0(a) = 1
2 satisfies

ν(2
1
τ − 1) = 1 (14)
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Figure 4: An affine immersion in R3 of the 2-manifold of log-gamma probability densities. The
black curves in the immersion represent the distributions with ν = 1 and τ = 1 and centred on
their intersection is a spherical neighbourhood of the uniform distribution. The other two points
are for the two cases (ν = 0.1, τ = 0.289) and (ν = 2.75, τ = 2.24) cf. Figures 6,7,8

and some are shown in Figure 1 The uniform density is the special case with τ = ν = 1 and this
can be seen in Figure 2, with sections through the surface of Figure 1. The log-gamma family
yields a smooth Riemannian 2-manifold with coordinates (ν, τ) ∈ R+×R+ and metric tensor given
by

[gij ] (ν, τ) =

[ τ
ν2 − 1

ν

− 1
ν

d2

dτ2 log(Γ)

]
. (15)

In fact, this manifold is an isometric diffeomorph of the 2-manifold of gamma densities, with
random variable x = − log a via natural coordinates (ν, τ) (cf. [1]) for which τ = 1 corresponds
to the subfamily of exponential densities. Through this smooth diffeomorphism we can therefore
represent the manifold of log-gamma densities as a natural affine immersion (cf. [2]) of R+ × R+

in R3

(ν, τ) 7→ {ν, τ, log Γ(τ)− τ log ν}. (16)

This is illustrated in Figure 4 which shows also a spherical neighbourhood in R3 centred on the point
at the uniform density, ν = 1 = τ ; the other two points are for the two cases (ν = 0.1, τ = 0.289)
and (ν = 2.75, τ = 2.24) which represent densities also having mean value 1

2 and used in the sequel
as initial unfitness distributions, cf. Figures 6,7,8.

The log-gamma entropy (8) is given by

SLG(ν, τ) = ντ (ν + 1)−τ−1 (A(ν, τ) +B(ν, τ)) (17)

with A(ν, τ) = τ(ν + (ν + 1) log(ν + 1)− 1)− (ν + 1)(τ − 1)ψ(τ)

and B(ν, τ) = (ν + 1) log

(
ν−τΓ(τ)

ν + 1

)
, ψ(τ) =

d log Γ(τ)

dτ
.

Figure 5 shows the graph as a surface and as a contour plot with gradient vector field indicated;
the main curvature occurs near the origin.

The Laplace transform integral (3) for the log-gamma density with general (ν, τ) seems in-
tractable so we used a series development up to sixth order for the term e−at, bearing in mind
that a ∈ (0, 1]. Thus, up to sixth order in t ≥ 0 we obtain a good approximation to L0(t), accurate
to about 0.1% up to t = 1. The corresponding expressions for L0(t), Pt(a), Et(a), σ2

t (a) and
hence N(t) are known but somewhat cumbersome to present here so we present some graphics
for illustration. The decline of the mean Et(a) as the density Pt(a) develops from three initial
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Figure 5: Shannon entropy function for the log-gamma family as a surface (left) and as a contour
plot with entropy gradient flow (right).
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Figure 6: Initial log-gamma densities P0(a) shown in left panel with central mean E0(a) = 1

2 for
the cases τ = 0.289, ν = 0.1 (lower graph), τ = 2.24, ν = 2.75 (upper graph), and the uniform
density P0(a) = 1 for τ = ν = 1. The right panel shows the decline with time of the mean Et(a)
from (4) for these initial densities.
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Figure 7: Initial log-gamma densities P0(a) shown in left panel with central mean E0(a) = 1

2 for
the cases τ = 0.289, ν = 0.1 (lower graph), τ = 2.24, ν = 2.75 (upper graph), and the uniform
density P0(a) = 1 for τ = ν = 1. The right panel shows the fractional decline with time of the
population N(t)/N(0) = L0(t) from (3) for these initial densities.
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Figure 8: Initial log-gamma densities P0(a) shown in left panel with central mean E0(a) = 1

2 for
the cases τ = 0.289, ν = 0.1 (lower graph), τ = 2.24, ν = 2.75 (upper graph), and the uniform
density P0(a) = 1 for τ = ν = 1. The right panel shows the decline with time of the variance σ2

t (a)
from (5) for these initial densities.

log-gamma densities P0(a) with central mean, E0(a) = 1
2 is shown in Figure 6. The more rapid

decline occurs for the initial density with τ = 0.289 and the slower decline occurs for the case
having τ = 2.24 with the uniform case τ = ν = 1 in between, cf. also Figure 4. The corresponding
decline of N(t)/N(0) = L0(t) is shown in Figure 7 and the variance is shown in Figure 8.

We do have an analytic solution for the special 1-parameter family of log-gamma densities with
τ = 1 (the ‘log-exponential’ densities), from (3) and (6):

Pt(a, ν, 1) =
e−ataν−1tν

Γ(ν)− Γ(ν, t)
(18)

Et(a, ν, 1) =
Γ(ν + 1)− Γ(ν + 1, t)

t(Γ(ν)− Γ(ν, t))
(19)

N(t)

N(0)
= L0(t) = νt−ν(Γ(ν)− Γ(ν, t)) (20)

where Γ(ν, t) is the incomplete gamma function, cf Figure 9. Et(a, ν, 1), declines for all choices
of parameter ν in the initial density, which includes of course also the uniform density. The
evolving family of probability densities (18) has the two positive parameters ν, t and Figure 10
shows the case for ν = 10, τ = 1. The corresponding information metric is known analytically, but
the expressions for components gij(ν, t) are cumbersome, involving MeijerG functions. Figure 11
shows the evolving approximate information distance in this metric

D(∆ν,∆t) =
√
g11(ν, t)∆ν2 + g12(ν, t)∆ν∆t+ g22(ν, t)∆t2 (21)

measured from the initial log-gamma distributions with τ = 1, ν = 0.5 (left) and τ = 1, ν = 10
(right), near t = 2.

Further analytic solutions arise for other initial log-gamma densities with positive integer τ
(the ‘log-Pearson Type III’ distributions) cf. Figure 2, as generalized hypergeomentric functions;
for example,

τ = 2 ⇒ N(t)

N(0)
= L0(t) = 2F2(ν, ν; ν + 1, ν + 1;−t) (22)

τ = 3 ⇒ N(t)

N(0)
= L0(t) = 3F3(ν, ν, ν; ν + 1, ν + 1, ν + 1;−t). (23)
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Figure 9: Initial log-gamma densities P0(a, ν, 1) from (18) are shown in the left panel for the
uniform density τ = ν = 1, and also for τ = 1 with ν = 0.4 and 10; Figure 10 shows the evolution
of the case with ν = 10. The right panel shows the corresponding fractional decline with time of
the population N(t)/N(0) from (20) for these initial densities. Figure 10 shows the evolution from
P0(a, 10, 1).
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Figure 10: The evolution of probability density Pt(a, 10, 1) from (18).

Figure 11: 11.The evolving approximate information distance D measured from the initial log-
gamma distributions with τ = 1, ν = 0.5 (left) and τ = 1, ν = 10 (right), near t = 2.
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Figure 12: The time component gtt(ν, t) of the evolving information metric for log-gamma with
τ = 1.
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Figure 13: Initial log-gamma densities P0(a, ν, 7) are shown in the left panel for the uniform density
τ = ν = 1, and also for τ = 7 with ν = 3, 10, 50 in graphs with increasing thickness. The right
panel shows the corresponding fractional decline with time of the population N(t)/N(0) from (25)
for these initial densities.
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3 Discussion

The initial states that we have investigated are

Symmetric uniform (τ = 1 with variance σ2
0(a) = 1

12 ≈ 0.083)

Symmetric, higher variance (τ = 0.289 with σ2
0(a) = 0.164)

Symmetric, lower variance (τ = 2.24 with σ2
0(a) = 0.045)

Asymmetric log-exponential (τ = 1, ν > 0)

Asymmetric unimodal (1 < τ ∈ N, ν > 0).

The new results show how evolution of an inhomogeneous rate process reacts to perturbations
of the uniform density using the smooth two parameter (ν, τ) family of log-gamma probability
density functions [2] to represent unfitness measured by parameter a ∈ (0, 1]. We have illustrated
the evolution from three initial states having central mean E0(a) = 1

2 but different variances (cf.
Figures 2 and 4). These first three cases have starting log-gamma densities in the left hand panes of
Figures 6,7,8 show widely differing shapes; the higher variance arises from peaks at the extremities
of unfitness and the lower variance case has a symmetric bell-like curve about the mean. The
evolution of features from the initial uniform density from Karev [9] is—cf. equation (6) above,

P0(a) = 1⇒ Pt(a) =
te−at

1− e−t
, Et(a) =

1

t
+

1

1− et
,
N(t)

N(0)
=

1− e−t

t
. (24)

To this we add our analytic results (18), (19) for the initial log-gamma cases with τ = 1, which
agrees with (24) at ν = 1 and the generalized hypergeometric solutions (22), (23) along with corre-
sponding versions for integer τ > 3. Our series approximation agrees with the analytic results for
the early development. Figure 6 shows that in each of our cases the evolution of mean unfitness
Et(a) does indeed follow the expected equation (5), which expresses Fisher’s law of natural selec-
tion [8]—see also Cziko [4] for discussion of selection theory in a wide range of biological processes
from synapses to cells and organisms. Also, in Figure 8 the very slow early evolution of its variance
σ2
t (a) reflects the corresponding lack of curvature in the mean. In fact, though the decline of the

mean fitness does change with the variation in starting conditions, the net population evolution
N(t) in Figure 7 seems surprisingly stable under quite considerable alterations in the shape and
variance of the initial density of inhomogeneity in fitness. The rate process evidently has a strong
smoothing effect when we begin from a central mean, even though the variances differ widely.

We can however obtain considerable changes in the evolution if we depart from an initial central
mean. We illustrate this using our analytic solutions to allow evolution over longer periods. For
example, the initial log-gamma density for τ = 1, equations (18),(19),(20), gives the examples
shown in Figure 9. Here we see the effect of ν which acts as a location parameter for the initial
density. Figure 10 shows the evolution of the initial case with ν = 10 into the probability densities
Pt(a, 10, 1) from (18). Figure 11 shows the evolving approximate information distance measured
from the initial log-gamma distributions with τ = 1, ν = 0.5 (left) and τ = 1, ν = 10 (right), near
t = 2.

Also, the initial unimodular log-gamma probability densities for τ = 7, Pt(a, ν, 7), give this
generalized hypergeometric solution

N(t)

N(0)
= L0(t) = 7F7(ν, ν, ν, ν, ν, ν, ν; ν + 1, ν + 1, ν + 1, ν + 1, ν + 1, ν + 1, ν + 1;−t) (25)

and again ν serves as a location parameter. Figure 13 illustrates cases for ν = 3, 10, 50 as well as
that for an initial uniform density.

Our approach has considered the determinate rate process for the evolution of individual types
with an inhomogeneous fitness distribution; Baake and Georgii [3] consider the multi-dimensional
systems of many types. Their mutation and differential reproduction processes yield n-dimensional
systems of differential equations which they analyse using variational methods.
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