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ABSTRACT

The optimal control of stochastic processes through
sensor estimation of probability density functions
has a geometric setting via information theory and
the information metric. Information theory iden-
tifies the exponential distribution as the maximum
entropy distribution if only the mean is known and
the gamma distribution if also the mean logarithm is
known. Previously, we used the surface representing
gamma models to provide an appropriate structure
on which to represent the dynamics of a univariate
process and algorithms to control it. In this paper
we extend these procedures to gamma models with
positive correlation, for which the information theo-
retic 3-manifold geometry has recently been formu-
lated. For comparison we summarize also the case
for bivariate Gaussian processes with arbitrary cor-
relation.
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1. INTRODUCTION

Certain continuous processes involve parametric sta-
tistical models to represent dynamic stochastic fea-
tures of one and two-dimensional time series or tex-
tures. In such cases the sampling of the distributed
variable may reveal natural non-Gaussian behaviour
to optimize. Recent work of Wang [9, 10, 11] has used
B-spline bump functions to decompose an arbitrary
probability density function and hence optimize its
control. We used in [6] the information geometry of
spaces of gamma distributions to model the control
of the particle size distribution in a commercial tur-
bid suspension. In the next section we consider the
information theoretic geometry of bivariate gamma
statistical models with positive correlation and offer
a Riemannian space on which dynamics may be stud-
ied and optimized.

2. McKAY BIVARIATE GAMMA
3-MANIFOLD

The classical family of Mckay bivariate gamma distri-
butions defined on 0 < x < y < ∞ with parameters
α1, σ12, α2 > 0 is given by:

f(x, y;α1, σ12, α2) =

( α1
σ12

)
(α1+α2)

2 xα1−1(y − x)α2−1e
−

√
α1
σ12

y

Γ(α1)Γ(α2)
, (1)

where σ12 is the covariance of X,Y. The correlation
coefficient and marginal gamma distributions, of X
and Y are given respectively, for positive x, y by :
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√

α1

α1 + α2
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These marginal functions are: the probability den-
sity of x averaged over all y values, and the proba-
bility density of y averaged over all x values, respec-
tively. Both are gamma distributions, but note that
it is not possible to choose parameters such that both
marginal functions are exponential—ie with disper-
sion parameters unity.

Explicitly, fX(x) is a gamma density with mean√
α1σ12 and dispersion parameter α1. Similarly,

fY (y) is a gamma density with mean (α1 +α2)
√

σ12
α1

and dispersion parameter (α1 + α2).
So, for the McKay distribution to be applicable to

a given joint distribution for (x, y), we need to have:

• 0 < x < y <∞

• Covariance > 0

• (Dispersion parameter for y) >
(Dispersion parameter for x)



• And we expect, roughly,
(Mean x)(Mean y) = α1+α2

α1

Using similar methods to those described in [6] for
the univariate gamma distribution, Arwini and Dod-
son [2] provided the Mckay bivariate gamma model
as a 3-manifold, equipped with Fisher information as
Riemannian metric; they derived the induced geom-
etry, i.e., the Riemann curvature tensor, the Ricci
tensor, the scalar curvatures etc.

Denote by M the set of Mckay bivariate gamma
distributions, that is

M = {f |f(x, y;α1, σ12, α2)

=
( α1

σ12
)

(α1+α2)
2 xα1−1(y − x)α2−1e

−
√

α1
σ12

y

Γ(α1)Γ(α2)
,

y > x > 0, α1, σ12, α2 > 0} (2)

Then we have:
Global coordinates (α1, σ12, α2) make M a 3-
manifold with Fisher information metric [gij ] given
by :

[gij ] =

 −3 α1+α2
4 α12 + ψ′(α1) α1−α2

4 α1 σ12
− 1

2 α1
α1−α2
4 α1 σ12

α1+α2
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1
2 σ12

ψ′(α2)

 (3)

It follows that for small changes dα1, dα2, dσ12 the
element of arclength ds is given by

ds2 =
3∑

ij=1

gij dxi dxj (4)

with (x1, x2, x3) = (α1, σ12, α2). For larger separa-
tions between two bivariate gamma distributions the
arclength along a curve is obtained by integration of
ds.

A path through the parameter space M mod-
els the dynamics of a process change as a curve,
parametrized by t in some interval a ≤ t ≤ b, given
by

c : [a, b] →M : t 7→ (c1(t), c2(t), c3(t)) (5)

and its tangent vector ċ(t) = (ċ1(t), ċ2(t), ċ3(t)) has
norm ||ċ|| given via (3) by

||ċ(t)||2 =
3∑

i,j=1

gij ċi(t) ċj(t). (6)

and the information length of the curve is

Lc(a, b) =
∫ b

a

||ċ(t)|| dt for a ≤ b. (7)

Since arc length is often difficult to evaluate analyt-
ically, we sometimes use the ‘energy’ of the curve
instead of length for comparison of information cost
differences between nearby curves. Energy is given
by integrating the square of the norm of ċ

Ec(a, b) =
∫ b

a

||ċ(t)||2 dt. (8)

Arwini and Dodson [2] gave details of the curva-
ture tensor and its related operators, together with
studies of some submanifolds of the McKay manifold,
and illustrations of how the correlation influences the
curvature. The McKay manifold has non-constant
negative scalar curvature. This is in contrast to the
manifold of bivariate Gaussian distributions, which
we describe in the next section and which has con-
stant negative curvature.

3. BIVARIATE GAUSSIAN 5-MANIFOLD

The probability density of the 2-dimensional normal
distribution has the form:

f(x) =
1
2π
|Σ|− 1

2 e−
1
2 (x−µ)′Σ−1(x−µ), (9)

where

x =
[
x1

x2

]
, µ =

[
µ1

µ2

]
, Σ =

[
σ11 σ12

σ12 σ22

]
,

−∞ < x1 < x2 <∞,

−∞ < µ1 < µ2 <∞,

0 < σ11, σ22 <∞.

This contains the five parameters µ1, µ2, σ11, σ12, σ22.
So our global coordinate system consists of the 5-
tuples

θ = (θ1, θ2, θ3, θ4, θ5) = (µ1, µ2, σ11, σ12, σ22).

We put

θ1 = µ1,

θ2 = µ2,

θ3 = σ11,

θ4 = σ12,

θ5 = σ22.

The information metric tensor is known [8] to be



given by:
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(10)

where 4 is the determinant

4 = |Σ| = θ3θ5 − (θ4)2.

4. SQUARE ROOT B-SPLINE APPROXIMA-
TION TO BIVARIATE GAMMA DISTRIBU-
TIONS

The management and performance optimization of a
stochastic process represented by gamma paramet-
ric models may then be represented through this
Riemannian geometry. Other distributions may be
treated similarly. In the case of simultaneous han-
dling of two probability density functions, considered
by Wang [11], we have a product of two Riemannian
spaces and correlations between the two distributions
would appear as a twisting of this product.

In this case the family of bivariate gamma distri-
butions can still be considered. However, since

lim
x,y→+∞

f(x, y, α1, σ12, α2) = 0 (11)

for any arbitrarily small ε > 0 there is a
b(ε, α1, σ12, α2) > 0 such that the following inequality
holds

∀x, y > b(ε, α1, σ12, α2)
|f(x, y, α1, σ12, α2)| ≤ ε. (12)

This indicates that we can use the following B-
spline functions to approximate the probability den-
sity function to give

|
√
f(x, y, α1, σ12, α2)−

n∑
i=1

wiBi(x, y)| ≤ δ (13)

where Bi(x, y) are the pre-specified bivariate basis
functions defined on Ω = [0, b] × [0, b], wi are the
weights to be trained adaptively and δ is a small num-
ber generally larger than ε. It has been shown that
the square root approximation has the advantage of
high numerical robustness in comparison with lin-
ear B-splines. Indeed, such an approximation will be
used here to represent the coupled links between the

three parameters and the probability density function
f.

Since all the basis functions are pre-specified, dif-
ferent values of {α1, σ12, α2} will generate different
sets of weights. As such, the approximation (4.16)
should be further represented as√

f(x, y, α1, σ12, α2) =
n∑

i=1

wiBi(x, y) + e (14)

where |e| ≤ δ. In Wang ([12]), the following trans-
formed representation has been used√

f(x, y, α1, σ12, α2) = C(x, y)Vk + h(Vk)Bn(x, y)
(15)

to guarantee that∫ b

0

∫ b

0

f(x, y, α1, σ12, α2)dxdy = 1

where Vk = (w1, w2..., wn−1)T constitutes a vector of
independent weights, and h(.) is a known nonlinear
function of Vk.

With this format, the relationship between V and
{α1, σ12, α2} can be formulated using (15).

5. CONTROL OF THE DISTRIBUTION

Once such square root models are formulated, the
next question arising from many practical situations
is to see how the parameters of a distribution can
be selected so that the actual distribution is made
as close as possible to a given one. This is a con-
trol problem and has many applications in particu-
late processing.

It is assumed that the initial bivariate gamma dis-
tribution is characterised by {α1(0), σ12(0), α2(0)}
and the desired distribution is presented by
{α1(f), σ12(f), α2(f)}, then focus will be made on
the evaluation of how the weight vector Vk will be-
have in tuning the initial distribution to the final dis-
tribution. Since the weight vector Vk is directly re-
lated to the three parameters in the bivariate gamma
distribution, the tuning rule for the weight vector Vk

will be used. Let g(x, y) represent the probability
density of the bivariate gamma distribution with pa-
rameter set

{α1(f), σ12(f), α2(f)}.

This means that an effective trajectory for Vk

should be chosen to minimise the following perfor-
mance function

J =
1
2

∫ b

0

∫ b

0

g(x, y)log
K(x, y)
g(x, y)

dxdy (16)



with K(x, y) = C(x, y)Vk + h(Vk)Bn(x, y).
This leads to the following application of the gra-

dient rule

Vk = Vk−1 − η
∂J

∂V
|V =Vk−1 (17)

where k = 0, 1, 2, . . . represents the sample number
and η > 0 is a pre-specified learning rate.

Using the relationship between the weight vector
and the three parameters, the adaptive tuning of the
actual parameters in the pdf of (15) can be readily
formulated.

Now, for two probability density functions p and
p′ on an event space Ω, the function

KL(p, p′) =
∫

Ω

log
p(x)
p′(x)

p(x)dx (18)

is called the Kullback-Leibler divergence or relative
entropy. In our situation, we could instead of (16),
consider (18) as the performance function; explicitly
this would be:

W =
1
2

∫ b

0

∫ b

0

g(x, y)log
g(x, y)
K(x, y)

dxdy (19)

with K(x, y) = (C(x, y)Vk + h(Vk)Bn(x, y).
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