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1 Introduction

Consider a principal G–bundle G ↪→ P
π−→−→ B. Principal connections are

characterized in terms of jets by the following.

Theorem (Garćıa [5]) There exists a natural one–to–one correspondence be-
tween the set of principal connections on P and the set of G–invariant sections
of the first jet bundle JP →−→ P ; that is, sections of JP/G →−→ B. Moreover,
every principal connection on P appears as the pullback of a certain universal
connection ωΛ on JP/G× P →−→ JP/G.

In this paper, we characterize the space of principal connections in the cases
of the Heisenberg bundles over T 2 and the Hopf bundle over S2.

For S1–bundles over compacta, we have

Theorem (Kobayashi [7]) Let M be a compact manifold. Then there is a one–
to–one correspondence between equivalence classes of circle bundles over M and
the cohomology group H2(M,Z). Furthermore, given an integral closed 2–form
Φ on M there is a circle bundle π : E −→M with connection form ω such that
Φ is the curvature of ω (that is π∗(Φ) = dω).

We bring these two theorems together by displaying the universal connec-
tions and their universal curvatures, so explicitly illustrating Chern–Weil theory
in our context.

In a subsequent paper, we shall apply the method introduced here to reduc-
tive coset spaces in general.

2 S1–bundles over T 2

We define H3
0 to be the 3–dimensional abelian Lie group, and for n 6= 0 we

define

H3
n =


 1 x1 −x

3

n
0 1 x2

0 0 1
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so that H3
n is diffeomorphic to R3 but has the Lie group structure induced by

matrix multiplication as indicated. Observe that in each case H3
n is a semidirect

product R2
nϕn R with the twisting given by the representation

ϕn : R −→ GL2 : t 7→
(

1 − tn
0 1

)
for n 6= 0 and the trivial representation for n = 0.

Theorem 1 Up to isomorphism, all principal S1–bundles over T 2 can be ob-
tained as

Kn = H3
n/Z

3 π−→−→ T 2 = R
2/Z2 .

Proof. Representing S1 = R/Z, we apply reduction mod 1 to regard ϕn : S1 −→
Diff (T 2), the diffeomorphism group of the torus. Then from the covering action

R
2 ϕn−→ R

2

↓ ↓
T 2 ϕn−→ T 2

we obtain the pullback diagram

T 2 ×ϕn S1 −→ T 2 × S1

↓ ↓
T 2 ϕn−→ T 2

Observing that T 2 ×ϕn S1 ∼= H3
n/Z

3, the theorem follows. �

Thus we consider the Heisenberg bundles

H3
n

π̃−→−→ R
2 : (x1, x2, x3) 7→ (x1, x2) .

Now, the left–invariant vector fields on H3
n are

e1 =
∂

∂x1
, e3 =

∂

∂x3
and e2 =

∂

∂x2
− nx1 ∂

∂x3
.

We denote the dual left–invariant 1–forms by ω1, ω3, ω2, respectively, so that
the Maurer–Cartan equations appear as

dω1 = 0 ,
dω2 = 0 ,
dω3 = nω1 ∧ ω2 .

This reflects the splitting of the Heisenberg algebra into a semidirect sum

h3
n = R

2 ⊕ϕn∗ R

of abelian Lie algebras.
We induce connections on these Heisenberg bundles via the vertical and the

horizontal bundles
Vn = 〈e3〉
Hn = 〈e1, e2〉

2



so that the corresponding connection form is ω = ω3. Then the curvature form
is Ω = dω3 = nω1 ∧ ω2.

Next, observe that the lift of the action of R on H3
n, which is given by

t ·

 1 x1 −x
3

n
0 1 x2

0 0 1

 =

 1 x1 −x
3

n + t

0 1 x2

0 0 1

 ,

to TH3
n and to the first jet bundle of H3

n
π̃−→−→ R

2, denoted by J(π̃), is trivial.
Thus a section of π̃ may be represented by a function s : R2 −→ R, and a
section of J(π̃) by the triple (x, s, σ) where x = (x1, x2), s is a section of π̃, and
σ : TxR2 −→ Ts(x)R. With respect to the frame determined by the coordinates
x1 and x2 on the base and the vertical vector e3 tangent to the fiber, σ appears
as a 1 × 2 matrix (σ1, σ2). In these coordinates, the horizontal lift map of the
corresponding connection is represented by(

1 0
σ1 σ2

)
,

reflecting the privileged role of the x1–coordinate in H3
n.

In order to discuss S1–bundles over T 2, we must pass to the quotient bundle
H3
n/Z

3 π−→−→ T 2 = R
2/Z2. This forces both σ1 and σ2 to be periodic of period

1, whence the two components of s∗ must also be periodic of period 1. Thus s
is a doubly periodic function on R2 and we have proved

Theorem 2 The space of all principal connections on H3
n over R2 is repre-

sented by the set of all R2–valued functions σ = (σ1, σ2) on R
2 such that σ2

is nonvanishing, and the space of all principal connections on Kn = H3
n/Z

3

over T 2 = R
2/Z2 by the set of all R2/Z2–valued σ on R

2/Z2 such that σ2 is
nonvanishing.

Since we view principal connections as horizontal lift maps, the connection
1–form is obtained from

1−
(

1 0
σ1 σ2

)
by a brief calculation as

ω = ω3 − σ1 ω
1 + (1− σ2)ω2 . (1)

The special choices σ1 = 0, σ2 = 1 yield the canonical connections on these
Heisenberg bundles.

Computing the curvature, we obtain

Ωω = dω = nω1 ∧ ω2 − d(σ1 ω
1 + σ2 ω

2) . (2)

As expected from the Chern–Weil theory, the Euler class does not depend on
the connection. Observe that in fact we have obtained a stronger, more explicit
result: we see directly that the curvature of any connection is cohomologous to
that of the canonical connection.

Observe that (
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Modugno [8] extended Garćıa’s theorem to general fibered manifolds. He
identified the spaces of sections which characterize connections and incorporated
them into systems of connections, on which he found universal connections. Ap-
plications to the particular case of the frame bundle have yielded some stability
theorems [1, 4].

Remark Circle bundles over other surfaces of genus ≥ 1 may be handled in a
similar manner.

3 The Hopf Fibration

Consider these equivalent versions of the famous Hopf bundle:

S3 ∼= SO4/SO3
∼= (SO3 × S3)/SO3

∼= (SO3 × Spin3)/SO3

π ↓ π ↓ π ↓ π ↓
S2 ∼= SO3/SO2

∼= SO3/SO2
∼= SO3/SO2

First we work with the bundle SO4 = SO3 × Spin3
π̃−→−→ SO3.

We have the Lie algebra splitting

so4
∼= so3 ⊕ so3

with Maurer–Cartan equations dω1 = ω2 ∧ ω3

dω2 = ω3 ∧ ω1

dω3 = ω1 ∧ ω2

⊕
 dω4 = ω5 ∧ ω6

dω5 = ω6 ∧ ω4

dω6 = ω4 ∧ ω5


where the (ωi) are a basis for the left–invariant 1–forms on so4 and we have
chosen all 6 structure constants to be 1/2.

Define a basis for left–invariant 1–forms on SO3, α1, α2, α3, such that for
π̃ : SO4 −→−→ SO3, we have π̃∗αi = ωi+3.

Next we take the quotients to obtain π : SO4/SO3 −→−→ SO3/SO2.
For convenience, we consider the subgroup SO2 ≺ SO3 via its corresponding

Lie subalgebra

so2 =
〈

1
3
(
α1 + α2 + α3

)〉
;

that is,

SO2 =
{

exp
(
t

3
(
ε1 + ε2 + ε3

))}
so

π∗so2 = 〈ω4 + ω5 + ω6〉 .

This will give rise to the Hopf fibration. To obtain the remainder of the
principal S1–bundles over S2, we simply require

π∗
(

1
3

(α1 + α2 + α3)
)

= n (ω4 + ω5 + ω6)

for integral n 6= 0, and take instead the trivial bundle S2×S1 −→−→ S2 for n = 0.
The Hopf bundle is then the case n = 1.
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3.1 The Hopf Connection

Observe that we have a simple connection form ω̃H on SO4
π̃−→−→ SO3 as follows.

Dual to the coframe (ωi) we take the frame (ei), obtaining

Vω̃H ⊕Hω̃H = T (SO4)

with
Vω̃H = 〈e1, e2, e3〉 , Hω̃H = 〈e4, e5, e6〉 .

Note that our frames are anholonomic; they are adapted to the group structure,
not to the connection.

Now, to obtain a connection on SO4 −→−→ SO3/SO2, we simply “move”
a 1–dimension subspace from Hω̃H to become vertical. Changing from total
space SO4 to SO4/SO3 only involves removing 〈e1, e2, e3〉 from the resulting
vertical space. Our representative of so2 is 〈13

(
α1 + α2 + α3

)
〉, so we obtain a

connection
ωH = ω4 + ω5 + ω6

on SO4/SO3 −→−→ SO3/SO2 with

VωH = 〈e4 + e5 + e6〉

and HωH a 2–dimensional subbundle of 〈e4, e5, e6〉 with “normal vector” in the
direction (1, 1, 1). Its curvature form is

ΩH = dωH = ω4 ∧ ω5 + ω5 ∧ ω6 + ω6 ∧ ω4 .

The corresponding (dual) horizontal lift map on covectors is

ω↑H : αi +
〈

1
3
(
α1 + α2 + α3

)〉
7−→ ωi+3 + 〈ω4 + ω5 + ω6〉

which is characterized by the 3 × 3 identity matrix, so distinguishing the Hopf
connection ωH .

For the remainder of the principal S1–bundles over S2, we take

ω = nωH = n (ω4 + ω5 + ω6)

for the connection 1–form, obtaining Ω = nΩH for the curvature 2–form. We
observe that the bundle corresponding to n then has Euler class n, as it should.

3.2 The Space of Connections

The space of all principal connections on the Hopf bundle is approached via
that for the SO3× Spin3

∼= SO4
π̃−→−→ SO3 bundle. A connection corresponds to

a section of the first jet bundle, and such a section associates to each x ∈ SO3

a point s(x) ∈ Spin3 and a map TxSO3 −→ Ts(x)Spin3. This latter, as a matrix
with respect to the domain frame (εi) dual to the coframe (αi) and the codomain
frame (e4, e5, e6), we denote by (σij).

To pass to the Hopf bundle, s : SO3 −→ Spin3 must be SO2–equivariant;
this is given by the infinitesimal condition

s∗(ω4 + ω5 + ω6) = α1 + α2 + α3 .
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It follows that, as a matrix, (s∗) must have column–sums equal to 1 and its
transpose (s∗) has row–sums equal to 1, whence (σij) must have row–sums
equal to 1 for passage to the Hopf bundle. Hence, these sections of the first
jet bundle of SO3 × Spin3

π̃−→−→ SO3 which have such s and (σij) correspond
to SO2–equivariant sections of the first jet bundle of SO4/SO3

π−→−→ SO3/SO2,
and these are principal connections. This proves

Theorem 3 The space of all principal connections on the Hopf bundle is repre-
sented by the space of all 3×3 matrices (σij) of rank 3 such that the row–sums
are 1.

Again, we obtain the connection 1–forms from (1− ω↑). This is essentially
given by 1− (σij); we must pass to the quotient, of course, for the actual Hopf

bundle. For the bundle SO4
π̃−→−→ SO3, we have

ω̃ = ω̃H + (1− (σij)) ·

 ω4

ω5

ω6


= ω̃H +

∑
i,j

(δij − σij)ωj+3 ,

Ω̃ = dω̃ = dω̃H + d

(∑
i,j

(δij − σij)ωj+3

)
,

again displaying the curvature of any connection as cohomologous to that of a
standard connection.

For the Hopf bundle itself, by a suitable change of frames we may assume that
(σij) = (σ11) ⊕ (σ′ij) in block–diagonal form, where σ11 6= 0 and (σ′ij) ∈ GL2.
Then (σ′ij) gives the horizontal lift map ω↑H for the Hopf connection, and we
obtain any other connection on the Hopf bundle as

ω = ωH + (1− (σ′ij)) ·
(
η1

η2

)
,

Ω = dω = ΩH + d

(∑
i,j

(δij − σ′ij)ηj
)

where η1, η2, ω4 + ω5 + ω6 are the new basis of left–invariant 1–forms on
Spin3 = S3. Once again, the curvature of any connection is explicitly displayed
as cohomologous to that of a standard connection, the Hopf connection here.

Finally, any connection on any of the other principal S1–bundles over S2 is
obtained merely by substituting nωH for ωH , and thus nΩH for ΩH , reflecting
our standard connection nωH on the bundle corresponding to n.
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group, Tôhoku Math. J. (2) 8, 29–45 (1956).

[8] M. Modugno, Systems of vector valued forms on a fibred manifold and
applications to gauge theories, Proc. Conf. Diff. Geom. Meth. in Math.
Phys., Salamanca 1985, Lect. Notes Math. 1251, Springer 1987, 238–264.

7


