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Abstract The McKay bivariate gamma distribution has marginal gamma densities with
positive covariance and recently its information geometry as a 3-manifold has been pro-
vided. Here we derive: natural coordinates, explicit expressions for the α-connections,
mutually dual foliations and an affine embedding in Euclidean R4. We compute also the
Kullback-Leibler divergence and compare it with the canonical divergence for two McKay
densities.

1 Introduction

Recently, Dodson and Matsuzoe [7] provided an affine embedding for gamma densities and
Arwini and Dodson [3] derived the information geometry of the McKay family of bivariate
gamma densities. We showed in [3] that gamma distributions provide models for depar-
tures from randomness since every neighbourhood of an exponential distribution contains
a neighbourhood of gamma distributions, using the information theoretic metric topol-
ogy. This topological result is inherently stable under small perturbations of a process,
something that would be important in real applications. It gives confidence in the use of
gamma distributions to model near random processes. We recall also the result of Hwang
and Hu [8] who proved for n ≥ 3 independent positive random variables x1, x2, . . . , xn

with a common continuous probability density function f, that having independence of
the sample mean x̄ and sample coefficient of variation cv = S/x̄ is equivalent to f being
a gamma distribution. The gamma manifold geometry has been applied to a range of
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real situations, such as genome structure [4], cosmological voids and galaxy clustering [5]
and communication clustering[6]. For further details on information geometry we refer to
Amari [1] and Amari and Nagaoka [2].

The set of McKay bivariate gamma distributions is

M = {f | f(x, y;α1, σ12, α2) =

(
α1

σ12

)α1+α2
2 xα1−1 (y − x)α2−1

Γ(α1) Γ(α2)
e
−

√
α1
σ12

y
,

y > x > 0, α1, σ12, α2 > 0}. (1.1)

Take (α1, σ12, α2) = (ξ1, ξ2, ξ3) ∈ R+ × R+ × R+ as a local coordinate system for (1.1),
with σ12 the covariance. Then M is a Riemannian 3-manifold with Fisher metric given
by [3]:

[gij] =

[∫ ∞

0

∫ ∞

x

(
∂2 log f

∂ξi∂ξj

)
f dy dx

]
=

 −3 α1+α2

4 α1
2 + φ′(α1)

α1−α2

4 α1 σ12
− 1

2 α1
α1−α2

4 α1 σ12

α1+α2

4 σ12
2

1
2 σ12

− 1
2 α1

1
2 σ12

φ′(α2)

 (1.2)

where φ(αi) = Γ′(αi)
Γ(αi)

(i = 1, 2).

The information geometry of M can provide a metrization of departures from randomness
and departures from independence for bivariate processes with positive covariance. They
have applications, for example, in the characterization of stochastic materials.

2 Natural coordinate systems, potential functions and

α-connections

For each α ∈ R, the α (or ∇(α))-connection is the torsion-free affine connection with
components:

Γ
(α)
ij,k =

∫ ∞

0

∫ ∞

x

(
∂2 log f

∂ξi∂ξj

∂ log f

∂ξk
+

1− α

2

∂ log f

∂ξi

∂ log f

∂ξj

∂ log f

∂ξk

)
f dy dx

In particular, the 1-connection is said to be an exponential connection, and the (-1)-
connection is said to be a mixture connection. We say that an α-connection and the
(−α)-connection are mutually dual with respect to the Fisher metric g since the following
formula holds:

Xg(Y, Z) = g(∇(α)
X Y, Z) + g(Y,∇(−α)

X Z),

where X, Y and Z are arbitrary vector fields on M .

Proposition 2.1 Let M be the McKay bivariate gamma 3-manifold. Set θ =
√

α1

σ12
.

Then (α1, θ, α2) is a natural coordinate system of the 1-connection and

ψ = log Γ(α1) + log Γ(α2)− (α1 + α2) log θ (2.3)

is the corresponding potential function.
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Proof: Set θ =
√

α1

σ12
. Then the logarithm of McKay bivariate gamma distributions can

be written as

log f(x, y;α1, θ, α2) = log

(
θ(α1+α2)xα1−1(y − x)α2−1e−θ y

Γ(α1)Γ(α2)

)
= − log x− log(y − x) (2.4)

+α1(log x) + θ(−y) + α2(log(y − x)) (2.5)

−(log Γ(α1) + log Γ(α2)− (α1 + α2) log θ). (2.6)

Hence the set of all McKay bivariate gamma distributions is an exponential family. The
terms in the line (2.5) implies that (α1, θ, α2) is a natural coordinate system, and (2.6)
implies that ψ = log Γ(α1) + log Γ(α2)− (α1 + α2) log θ is its potential function. �

We remark that (2.4) implies that C = − log x− log(y− x) is the normalization function
since f is a probability distribution.

Proposition 2.2 The Fisher metric with respect to natural coordinates (α1, θ, α2) is given
by:

[gij] =

 φ′(α1) −1
θ

0
−1

θ
α1+α2

θ2 −1
θ

0 −1
θ

φ′(α2)

 (2.7)

Proof: Since ψ is a potential function, the Fisher metric is given by the Hessian of ψ, that
is,

gij =
∂2ψ

∂ξi∂ξj
.

Then, we have the Fisher metric by a straightforward calculation. �

Since the set of Mckay bivariate gamma distributions is an exponential family, the con-
nection ∇(1) is flat. In this case, (α1, θ, α2) is a 1-affine coordinate system.

Proposition 2.3 With respect to natural coordinates (α1, θ, α2), the components of the
α-connection and its curvature tensor on the Mckay bivariate gamma manifold are as
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follows:

Γ
(α)
11,1 =

(1− α) φ′′(α1)

2
,

Γ
(α)
22,1 = Γ

(α)
12,2 =

(1− α)

2 θ2
,

Γ
(α)
22,2 = −(1− α) (α1 + α2)

θ3
,

Γ
(α)
23,2 = Γ

(α)
22,3 = Γ

(α)
22,1 ,

Γ
(α)
33,3 =

(1− α) φ′′(α2)

2
,

Γ
(α)1
11 =

(−1 + α) φ′′(α1) (−1 + φ′(α2) (α1 + α2))

2 (φ′(α1) + φ′(α2)− φ′(α1)φ′(α2) (α1 + α2))
,

Γ
(α)2
11 =

θ (−1 + α) φ′(α2)φ
′′(α1)

2 (φ′(α1) + φ′(α2)− φ′(α1)φ′(α2) (α1 + α2))
,

Γ
(α)3
11 =

(−1 + α) φ′′(α1)

2 (φ′(α1) + φ′(α2)− φ′(α1)φ′(α2) (α1 + α2))
,

Γ
(α)1
12 = Γ

(α)1
23 =

(−1 + α) φ′(α2)

2 θ (φ′(α1) + φ′(α2)− φ′(α1)φ′(α2) (α1 + α2))
,

Γ
(α)2
12 = Γ

(α)2
23 =

(−1 + α) φ′(α1)φ
′(α2)

2 (φ′(α1) + φ′(α2)− φ′(α1)φ′(α2) (α1 + α2))
,

Γ
(α)3
12 = Γ

(α)3
23 =

(−1 + α) φ′(α1)

2 θ (φ′(α1) + φ′(α2)− φ′(α1)φ′(α2) (α1 + α2))
,

Γ
(α)1
22 =

− ((−1 + α) φ′(α2) (α1 + α2))

2 θ2 (φ′(α1) + φ′(α2)− φ′(α1)φ′(α2) (α1 + α2))
,

Γ
(α)2
22 =

− ((−1 + α) (−φ′(α1)− φ′(α2) + 2φ′(α1)φ
′(α2) (α1 + α2)))

2 θ (φ′(α1) + φ′(α2)− φ′(α1)φ′(α2) (α1 + α2))
,

Γ
(α)3
22 =

− ((−1 + α) φ′(α1) (α1 + α2))

2 θ2 (φ′(α1) + φ′(α2)− φ′(α1)φ′(α2) (α1 + α2))
,

Γ
(α)1
33 =

(−1 + α) φ′′(α2)

2 (φ′(α1) + φ′(α2)− φ′(α1)φ′(α2) (α1 + α2))
,

Γ
(α)2
33 =

θ (−1 + α) φ′(α1)φ
′′(α2)

2 (φ′(α1) + φ′(α2)− φ′(α1)φ′(α2) (α1 + α2))
,

Γ
(α)3
33 =

(−1 + α) φ′′(α2) (−1 + φ′(α1) (α1 + α2))

2 (φ′(α1) + φ′(α2)− φ′(α1)φ′(α2) (α1 + α2))
,

R1212 =
(1− α2) φ′(α2) (φ′(α1) + φ′′(α1) (α1 + α2))

4 θ2 (φ′(α1) + φ′(α2)− φ′(α1)φ′(α2) (α1 + α2))
,

R1213 = − (1− α2) φ′(α2)φ
′′(α1)

4 θ (φ′(α1) + φ′(α2)− φ′(α1)φ′(α2) (α1 + α2))
,

R1223 = − (1− α2) φ′(α1)φ
′(α2)

4 θ2 (φ′(α1) + φ′(α2)− φ′(α1)φ′(α2) (α1 + α2))
,

R1313 = − (1− α2) φ′′(α1)φ
′′(α2)

4 (φ′(α1) + φ′(α2)− φ′(α1)φ′(α2) (α1 + α2))
,

R1323 = − (1− α2) φ′(α1)φ
′′(α2)

4 θ (φ′(α1) + φ′(α2)− φ′(α1)φ′(α2) (α1 + α2))
,

R2323 =
(1− α2) φ′(α1) (φ′(α2) + φ′′(α2) (α1 + α2))

4 θ2 (φ′(α1) + φ′(α2)− φ′(α1)φ′(α2) (α1 + α2))
(2.8)
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while the other independent components are zero. �

So the 1 and (-1)-connections on the Mckay manifold are flat.

3 Mutually dual foliations

We give a mutually dual foliation of the McKay bivariate gamma manifold. Since M is an
exponential family, a mixture coordinate system is given by the potential function (2.3),
that is,

η1 =
∂ψ

∂α1

= φ(α1)− log θ,

η2 =
∂ψ

∂θ
= −α1 + α2

θ
,

η3 =
∂ψ

∂α2

= φ(α2)− log θ. (3.9)

Since (α1, θ, α2) is a 1-affine coordinate system, (η1, η2, η3) is a (−1)-affine coordinate
system, and they are mutually dual with respect to the Fisher metric. Therefore the
McKay bivariate gamma manifold has dually orthogonal foliations (See Section 3.7 in
[2]).

The coordinates in (3.9) have a potential function given by:

λ = α1φ(α1) + α2φ(α2)− (α1 + α2)− log Γ(α1)− log Γ(α2). (3.10)

Example 3.1 Take (α1, η2, α2) as a coordinate system for M ; the McKay bivariate gamma
distibutions take the form:

f(x, y;α1, η2, α2) =

(
−α1 + α2

η2

)α1+α2 xα1−1 (y − x)α2−1

Γ(α1) Γ(α2)
e

α1+α2
η2

y
.

and the Fisher metric is φ′(α1)− 1
α1+α2

0 − 1
α1+α2

0 α1+α2

(η2)2
0

− 1
α1+α2

0 φ′(α2)− 1
α1+α2

 .
We remark that (α1, θ, α2) is a geodesic coordinate system of ∇(1), and (η1, η2, η3) is a
geodesic coordinate system of ∇(−1).

4 Affine immersions

We show that the McKay bivariate gamma manifold can be realized in Euclidean R4 by
an affine immersion.

Let M be an n-dimensional manifold. Let f be an immersion from M to Rn+1, and let
ξ be a local vector field along f . If ξ is transversal to f(M) everywhere, we call the pair
{f, ξ} an affine immersion. We also call ξ a transversal vector field.
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Denote by D the standard flat affine connection of Rn+1. By the decomposition of the
tangent space Tf(x)Rn+1 (x ∈M), the covariant derivatives appear as follows:

DXf∗Y = f∗(∇XY ) + g(X, Y )ξ,

DXξ = −f∗(SX) + µ(X)ξ.

Then, an affine immersion induces a torsion free affine connection ∇, a symmetric (0, 2)-
tensor field g, a (1, 1)-tensor field S and a 1-form µ on the given manifold M .

Proposition 4.1 Let M be the McKay bivariate gamma manifold with the Fisher metric
g and the exponential connection ∇(1). Denote by (α1, θ, α2) a natural coordinate system.
Then M can be realized in R4 by the graph of a potential function, namely, M can be
realized by the affine immersion {f, ξ}:

f : M → R4 :

α1

θ
α2

 7→


α1

θ
α2

ψ

 , ξ =


0
0
0
1

 ,
where ψ is the potential function ψ = log Γ(α1) + log Γ(α2)− (α1 + α2) log θ.

Proof: The connections ∇(1) and ∇(−1) are torsion-free, and mutually dual with respect
to g. We have the Codazzi equation:

(∇(1)
X g)(Y, Z) = (∇(1)

Y g)(X,Z). (4.11)

Since ∇(1) is a flat affine connection, the integrability condition of the affine immersion
(Chapter 2 in [12]) is the Hessian symmetry

∂2ψ

∂θi∂θj
=

∂2ψ

∂θj∂θi
, (θ1, θ2, θ3) = (α1, θ, α2).

This partial differential equation can be solved since Equation (4.11) holds. �

5 Distance and divergences in M

The Riemannian metric defines a distance as the infimum over arc lengths in M between
f1 and f2, and for close enough points the minimizing curve is realizable as a geodesic.
In statistics, several other methods are available to represent differences between distri-
butions in a given family; these involve so-called divergence functions.

Let (M, g,∇(1),∇(−1)) be a dually flat space. Denote by (θi) the natural coordinate system
(1-affine coordinate system) and by (ηi) its dual affine coordinate system. For two points
f1 and f2 in M , the function

D(f1 ‖ f2) = ψ(f1) + λ(f2)−
3∑

i=1

θi(f1) ηi(f2) (5.12)

is called the canonical divergence or geometric divergence. See [2], [9], [10] and [11] for
further discussion.
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On the other hand,

KL(f1 ‖ f2) =

∫ ∞

y=0

∫ y

x=0

f1(x, y) log
f1(x, y)

f2(x, y)
dx dy (5.13)

is called the Kullback-Leibler divergence or relative entropy. We note that neither of these
divergence functions is symmetric, so they do not define a distance.

However, for two points f1(x, y) = f1(x, y;α1, θ, α2) and f2(x, y) = f2(x, y; γ1, ξ, γ2) we
do have the following relation between the divergences—note the switch in order of the
arguments:

D(f1 ‖ f2) = KL(f2 ‖ f1)

= α1 (log(ξ)− log(θ)− φ(γ1)) + α2 (log(ξ)− log(θ)− φ(γ2))

+ γ1

(
θ

ξ
+ φ(γ1)− 1

)
+ γ2

(
θ

ξ
+ φ(γ2)− 1

)
+ log

(
Γ(α1) Γ(α2)

Γ(γ1) Γ(γ2)

)
(5.14)

where φ(αi) = Γ′(αi)
Γ(αi)

, φ(γi) = Γ′(γi)
Γ(αi)

(i = 1, 2).
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