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Abstract 

The main characteristics of the significant wave height in an area of increased interest, the north 

Atlantic ocean, are studied based on satellite records and corresponding simulations obtained from 

the numerical WAve prediction Model (WAM). The two data sets are analyzed by means of a 

variety of statistical measures mainly focusing on the distributions that they form. Moreover, new 

techniques for the estimation and minimization of the discrepancies between the observed and 

modeled values are proposed based on ideas and methodologies from a relatively new branch of 

mathematics, information geometry. The results obtained prove that the modeled values 

overestimate the corresponding observations through the whole study period. On the other hand the 

2-parameter Weibull distribution fits the data in the study with parameters that vary spatially. This 

variation should be taken into account in optimization or assimilation procedures, which is possible 

by means of information geometric techniques. 
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1. Introduction  

In a demanding scientific and operational environment, the validity of high quality sea state 

information is constantly increasing. This is in direct correspondence with the significant number of 

applications that are affected: climate change, transportation, marine pollution, wave energy 

production and ship safety can be listed among them.    

One of the most credible approaches towards accurate sea state forecasting products is the use 

of numerical wave prediction systems in combination with atmospheric models, (see, e.g., 

WAMDIG, 1988; Lionelo et al., 1992; Komen et al., 1994; Chu and Cheng, 2008). Such systems 

have been proved successful for the simulation of the general sea state conditions on global or 

intermediate scale. However, when focusing on local characteristics usually systematic errors 

appear (see Janssen et al., 1987; Chu et al., 2004 and 2007; Makarynskyy, 2004 and 2005, 

Greenslade and Young, 2005; Galanis, et al., 2006; Emmanouil, et al., 2007; Galanis, et al., 2009). 

This is a multi-parametric problem in which several different issues are involved: The strong 

dependence of wave models on the corresponding wind input, the inability to capture sub-scale 

phenomena, the parametrization of certain wave properties especially in areas with complicated 

coastal formation where overshadowing and inaccurate refraction wave features emerge, as well as 

the lack of a dense observation network which, as in the case of atmospheric parameters over land, 

could help on the systematic correction of initial conditions. The latter increases the added value of 

satellite records for ocean wave parameters. 

Within this framework, there are two main ways that the research community followed over the 

last few years in order to minimize the effects of the above mentioned difficulties: Assimilating 

available observations in order to improve the initial conditions (Janssen. et al., 1987; Breivik and 

Reistad, 1994; Lionello et al., 1992 and 1995; Abdalla et al., 2005; Emmanouil et al., 2007) and 

optimization of the direct model outputs by using statistical techniques like artificial neural 

networks (Makarynskyy, O., 2004 and 2005), MOS methods, Kalman filters, etc. (Kalman, 1960; 

Kalman and Bucy, 1961; Rao et al. 1997; Galanis and Anadranistakis, 2002; Kalnay, 2002; Galanis 

et al., 2006 and 2009).  
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In both cases the main idea is the minimization of a “cost-function” that governs the evolution 

of the error. At this point a critical simplification is usually made: The “distance” between observed 

and modeled values or distributions is measured by means of classical Euclidean geometry tools – 

using, for example, least square methods. This is, however, not always correct. Recent advances, in  

particular the rapid development of information geometry, suggest that the distributions are 

elements of more complicated structures, non Euclidean in general. More precisely, distributions of 

the same type form a manifold, which is the generalization of a Euclidean space and in which the 

underlying geometry may differ significantly from the classical one (see Amari, 1985, Amari and 

Nagaoka, 2000; Arwini and Dodson 2007, 2008). The exact knowledge of the framework in which 

the data sets or distributions under consideration are classified may give more accurate criteria and 

procedures for the optimization of the final results.  

The purpose of the present work is twofold: At first, the sea state characteristics in the north 

Atlantic ocean are analyzed by means of a variety of statistical indices. Special attention is given to 

the probability distribution function of the significant wave height. In a second step, the derived 

statistical information is utilized for the estimation of possible biases in numerical wave predictions 

based on novel techniques provided in the framework of information geometry.   

For the above purposes simulated wave data obtained from the state-of-the art numerical WAve 

prediction Model WAM (Komen et al., 1994; WAMDIG, 1988; Jansen, 2000, Bidlot and Janssen, 

2003) and corresponding records from all the available satellites covering the study area (Radar 

Altimetry Tutorial project, Rosmorduc et al., 2009) are employed. The distributions that the two 

data sets form are recovered based on different statistical tests, and inter-comparisons are attempted.  

An application of the proposed methodology is outlined by focusing on a restricted area 

(northwestern coastline of France and Spain) avoiding lumping data from different wave climate 

regions. For the obtained outcomes alternative scenarios for the estimation of distances are 

discussed. The results and ideas presented in this work could be exploited for designing and using 

new methods for the optimization of the initial conditions and the final outputs of numerical wave 

prediction systems since they could support more sophisticated ways of realizing the corresponding 
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cost functions taking into account the geometric properties (scale and shape parameters for 

example) of the space that the data in this study form, and avoiding simplifications that the classical 

pattern (least square methods) impose.    

The presented material is organized as follows: In Section 2 the wave model, the data sets and 

the methodology used are described. The statistical results obtained for the observations and the 

corresponding modeled values are analyzed in Section 3. In particular, Subsection 3.1 focuses on 

the optimum choice of distributions that fit to the data in study, while in 3.2 a detailed study of the 

results obtained in a restricted area (northwestern coastline of Spain and France) is presented based 

on descriptive statistics and distribution fitting. In Section 4 a new approach dealing with the 

problem of distance estimation between observations and modeled values is proposed by using 

techniques of information geometry. Subsection 4.1 is devoted to the introduction of some general 

notions and results while in 4.2 a direct application to the wave data in study is attempted. Finally, 

the main conclusions of this work are summarized in Section 5.  

 

2. Models, data sets and methodology 

2.1. The Wave model. 

The model used for wave modeling is WAM Cycle 4 - ECMWF version (Jansen, 2000; 

Bidlot and Janssen, 2003). This is a third generation wave model which solves the wave transport 

equation explicitly without any assumptions on the shape of the wave spectrum (WAMDIG, 1988; 

Komen et al., 1994). The model was operated by our group (Atmospheric Modeling and Weather 

Forecasting Group, University of Athens, http://www.mg.uoa.gr) on an operational/forecasting 

mode (that is using forecasted wind forcing and not reanalysis data) for a period of 12 months (year 

2008) covering the north Atlantic ocean (Latitude 0N-80N, Longitude 100W–30E, Fig. 1). The 

wave spectrum was discretized to 30 frequencies (range 0.0417-0.54764 Hz logarithmically spaced) 

and 24 directions (equally spaced). The horizontal resolution used was 0.5x0.5 degrees and the 

propagation time step 300 seconds. WAM, ran on a deep water mode with no refraction, driven by 

6-hourly wind input (10m above sea level winds speed and direction) obtained by NCEP/GFS 
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global model with horizontal grid resolution 0.5x0.5 degrees. It should be noted that no assimilation 

procedure was employed since the available satellite data are used in our study as independent 

observations against which the modeled values are evaluated.  

  

2.2. The satellite data. 

The observation data used in this study are obtained from the ESA-CNES joint project Radar 

Altimetry Tutorial (Rosmorduc et al., 2009). These data contain near-real time gridded observations 

for significant wave height obtained by merging all available relevant satellite records from official 

data centers: ERS-1 and ERS-2 (ESA), Topex/Poseidon (NASA/CNES), Geosat Follow-On (US 

Navy), Jason-1 (CNES/NASA), Envisat (ESA). The system is running daily in an operational mode. 

Each run is based on the available satellite data of the previous two days from which a merged map 

is generated. The produced interpolated outputs cover the whole area of study (0N-80N, 100W–

30E) at a resolution of 1.0x1.0 degrees. Data are cross-calibrated and quality controlled using Jason-

1 as reference mission. The results are improved in case of additional mission availability. The 

period covered is again the whole year 2008.  

 

2.3. Statistical approaches – Methodology  

Both observations and wave modeled data are studied by two statistical points of view: The first  is 

based on descriptive statistical analysis methods where conventional indices are employed in order 

to capture the basic aspects of the data evolution spatially and temporally. The second approach is 

based on the study of the probability density function that fits to the available data. This is a 

complementary approach being able to provide additional information for the shape and scale of the 

data in study including possible impact of extreme values. In this way, a complete view of the main 

characteristics of observational and simulated significant wave height values is obtained.  

More precisely, the following statistical measures are used: 

 Mean value of available data:  



                        1 

2 

3 

Here SWH denotes the recorded (observed) or simulated significant wave height value and N the 

size of the sample.   
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that gives a measure of the "peakedness" of the probability distribution.   

Additionally, the basic percentiles (P5, P10, P25=Q1, P50=Median, P75=Q3, P90 and P95) are used.  

Apart from the above descriptive statistical approach, the data in study have been analyzed by a 

distributional point of view. More precisely, the optimum probability density functions (pdfs) that 

fit the observational and modeled significant wave height series are revealed. A variety of pdfs have 

been tested (Logistic, Normal, Gamma, Log-Gamma, Log-Logistic, Lognormal, Weibull, 

Generalized Logistic) at several levels of significance by utilizing different fitting tests 

(Kolmogorov-Smirnov, Anderson-Darling as well as P-P, Q-Q and plots). The results reveal a 

preference for the Weibull distribution but with parameters that vary spatially and temporarily 

(Section 3.1). It is worth noting at this point that a Weibull distribution was applied for the first time 
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to approximating a distribution of significant wave height by Nordenstrøm (1973). Relevant works 

have been also published by Thornton and Guza, 1983; Ferreira and Soares, 1999 and 2000; 

Prevosto et al., 2000; Muraleedharan et al., 2007; Gonzalez-Marco et al., 2008.  

Apart from the above-mentioned “classical” statistical approaches, one of the main novelties 4 

proposed in this work is the utilization of non conventional statistical techniques obtained from a 5 

relatively new branch of Mathematics, the information geometry. This approach, discussed in detail 6 

in Section 4, allows the accurate description of the space to which the results in this study belong 7 

and, based on the corresponding geometric properties, the better estimation of possible bias. In this 8 

way, one avoids a classical simplification adopted in conventional statistics: the calculation of 9 

distances based on Euclidean measures.   10 
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3. Results and Statistics  

3.1. Probability Density Function fitting   

The data obtained for the significant wave height in the North Atlantic Ocean, as simulated by the 

wave model (subsection 2.1) and recorded by the Radar Altimetry Tool (2.2), are studied here 

focusing on the distributions that they form. The use of all the statistical fitting tests mentioned 

earlier verified that, in most of the cases, the two-parameter Weibull distribution:  
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where α is the shape and β the scale parameter, fits well to the wave data at a significance level of 

0.05 or higher. An example is presented in figure 2. However, different parameters are obtained for 

the pdfs of satellite records and WAM values. On the other hand, a significant spatial variability is 

revealed.  

It should be noticed that the 3-parameter Weibull distribution fits also to the data in study but with 

trivial differences from the 2-parameter case. Since an additional parameter would result in far more 

technical calculations in the proposed information geometry methodology without providing 

essential improvement of obtained techniques, the 2-parameter Weibull has been adopted.  
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The data sets were partitioned into 3-monthly intervals (December-February, March-May, June-

August and September-November) in order to have a clearer view of the seasonal variability of the 

sea state. In figures 3-6 the shape parameter of the obtained Weibull distribution fitted to the 

satellite data is plotted over the whole area of interest while figures 7-10 contain the corresponding 

values for the WAM outputs. It is worth  underlining here that in both cases the values estimated are 

clearly increasing towards offshore areas. In particular, the maximum values emerged at the region 

southeast of Greenland and south of Iceland reaching values of 6.5 during the winter period (figures 

3 and 7). For the rest of the period, the same area keeps the maximum estimated values which, 

however, are significantly decreased. It is also noticeable that the estimated shape parameters for 

WAM outputs outmatch those of satellite records in a relatively mild but systematic way.   

The scale analogous values are presented in figures 11-14 for satellite records and 15-18 for their 

WAM counterparts. The wave model in this case seems to yield, in general, underestimated values. 

On the other hand, the increased values at the southern part of the domain, especially during 

summer months, can be partially attributed to the non uniform distribution of wave heights in this 

area.  

It is important to underline at this point that the significant spatial variation of both shape and scale 

parameters, revealed in all the above cases, indicates that considering uniform ways of studying or 

correcting wave heights over the whole Atlantic ocean is an assumption of increased risk.     

  

3.2. Focusing on a restricted area   

In this section, the attention is focused on a restricted area of increased interest due to several 

activities raised recently concerning mainly wave energy applications: the northwest coastline of 

France and Spain (red rectangle in Figure 1).  Indeed, in several European and national projects it 

has been set as primary target to gain exact knowledge of the local wave climate as well as the 

accurate sea state prediction in order to estimate the available energy potential.  
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The sea wave characteristics are studied here by two different points of view: Descriptive statistical 

measures, giving the main information for data in study, as well as distribution fitting in order to 

categorize them in a more uniform way appropriate for the new techniques proposed in this work.  

In Table 1 the main descriptive statistical indices, as described in Section 2.3, are presented in 4 

monthly intervals for the available satellite data. The time period covered is again the year 2008 and 

the sample size exceeds 2 million values. The corresponding results for the whole time period as 

well as divided in “Summer” (April-September) and “Winter” months (October-March) can be 

found in Table 2. The first conclusions are rather expected: The range of the observations as well as 

their mean value and variability are higher during winter. Furthermore, the increased kurtosis 

during March and May reveals that a significant part of the variability is related to non frequent 

outliers. The percentiles of the satellite records are presented in Tables 3 and 4 indicating a rather 

canonical distribution of the data.  
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The corresponding statistics for WAM outputs are presented in Tables 5-8. The basic descriptive 

statistical measures can be found in Tables 5 and 6 while the corresponding percentiles are 

presented in Tables 7 and 8. The same results are graphically represented in figures 19-22.  

Interesting conclusions can be stated here for the accuracy of the numerical wave model WAM in 

an open sea area:   

• WAM slightly, but constantly, overestimates wave heights through the whole study period 

(Figure 19). The time independence of this divergence is worth mentioning.  

• The variability of both observations and modeled values is increased during winter, something 

expected due to the unstable weather conditions. What needs to be mentioned is the 

consistently, again, higher values of the standard deviation of WAM (Figure 20).  

• Significant discrepancies exist between the ranges of the wave height results in the two sets 

(WAM simulations and satellite observations). This can be, at least partly, attributed to the fact 

that the observation data set is obtained by merging different satellite measurements, a 

procedure that always includes some smoothness of the final results due to interpolation. On 
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the other hand, the well known difficulties of WAM on successfully simulating the swell decay 

(WISE Group, 2007) contribute also to this problem.  

• The relatively higher values of the corresponding percentiles as well as the monotonic 

increased distances between them (Tables 3, 4, 7 and 8) confirm the overestimation of the data 

by WAM simulations and the non negligible influence of extreme values to their distribution. 

Although the purpose of this work is not to concentrate on problems of the wind/wave models 

that may lead to such deviations, it should be noted that the latter are closely related to the wind 

input used (atmospheric models discrepancies). On the other hand, the inclusion of current in 

wave forecasting is still lacking in WAM, while problems with the accurate simulation of the 

swell waves and especially their decay, as already mentioned earlier, also contribute to these 

discrepancies.  It is worth noticing at this point that when wind sea and swell components are 

considered, a spectral partitioning adopted will affect the accuracy of wind sea and swell 

statistics. The Hanson and Phillips formulation (developed by the Applied Physics Department 

of Johns Hopkins University, 2001) for labeling wind sea and swell is commonly applied. The 

main drawback of this approach is related to fully developed wind seas with a small wind decay 

but still in the same direction of the wave field, as shown by Quentin (2002), and later by 

Loffredo et al. (2009); if the new condition cannot satisfy the formulation adopted by Hanson 

and Phillips, the old wind sea will be treated as swell and the new wind sea set to zero. Further, 

as documented in Loffredo et al. (2009), the Hanson and Phillips formulation for labeling wind 

sea and swell may increase the number of wind seas as compared to other commonly used 

approaches for partitioning of wind sea and swell.  

• Skewness is increased in WAM outputs compared to the observations (Figure 21). This higher 

positive asymmetry indicates that a non-negligible portion of the modeled significant wave 

height is concentrated to relatively smaller values something that is less obvious in the 

corresponding observations.  

• Elevated kurtosis for WAM outputs can be attributed to the increased influence of extreme 

values. This situation is more obvious during March and the summer months (Figure 22).  
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Studying now the same data from a distribution fitting point of view, following the methodology 

discussed in Section 3.1, the following points may be emphasized:  

• the 2-parameter Weibull distribution seems to fit well to the data in study both for WAM and 

observed values. 

• The shape parameter (α) both for the recorded and simulated values of SWH seems to deviate 

from the case of Rayleigh distribution (tables 9-12 and figure 23) where a=2. The latter was the 

pdf proposed in previous works (e.g. Muraleedharan et al., 2007) indicating that the use of the 

general 2-parameter Weibull probability density function is more appropriate.  

• The increased values of the scale parameter (β) for WAM (figure 24) reconfirms the 

overestimation of modeled values as already noticed, based on the descriptive statistical 

measures. Moreover, the values of β for both cases follow the pattern of the mean values being 

reduced during summer months.   

• The discrepancies between the parameters of the Weibull distributions obtained for satellite 

records and modeled wave height values do not reach statistically significant levels. Therefore, 

the techniques described in Section 4.2.1 for estimating the distance between WAM outputs and 

the corresponding observations can be exploited. 

  

4. Estimation of the distance between observations and simulated values  

using information geometrical techniques. 

 In the previous sections special attention was given on the main statistical characteristics as 

well as the distributions formed by WAM values and the corresponding satellite records for the area 

of the North Atlantic Ocean. The obtained results reveal non negligible differences between the two 

data sets that should be taken into consideration in order to optimize the accuracy of the wave 

model. Some new ideas towards this direction based on information geometry (IG) techniques are 

discussed in the present work. More precisely, having already defined the best-fitting distributions 

to the data in study, a detailed description of the space that they form is attempted, the 
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corresponding geometric entities are investigated and new techniques are proposed for the accurate 

estimation of the distance between observations and modeled values.  

 

4.1. Basic information geometric concepts.  

In order to make this work as self-contained as possible, a short presentation of the main notions 

and terminology of information geometric techniques needed here follows. More details and results 

can be found in Amari, 1985; Amari and Nagaoka, 2000; Arwini and Dodson, 2007, 2008.  

Information geometry is a relatively new branch of mathematics in which the main idea is to 

apply methods and techniques of non-Euclidean geometry to probability theory and stochastic 

processes. In particular, information geometry realizes a smoothly parametrized family of 

probability distributions as a manifold on which geometrical entities such as Riemannian metrics, 

distances, curvature and affine connections can be introduced. To be more precise, a family of 

probability distributions  

                                     (1) 14 

where each element may be parametrized using the n real valued variables  in an open 

subset Ξ of 

15 

 while the mapping  is injective and smooth, is called a n-dimensional 

statistical manifold. The geometrical entities in a statistical manifold are dependent on the Fisher 

information matrix which at a point ξ is a nxn matrix  

16 

17 

18 

      (2) 19 

20 defined by   

 =       (3) 21 

Here  stands for the partial derivative with respect to the i-th factor,  is the log-likelihoood 

function:  

22 

23 

       (4)   24 



13 
 

1 and 

        (5) 2 

denotes the expectation with respect to the distribution . 3 

The matrix  is always symmetric and positive semi-definite. If, in addition,  is positive 

definite, then a Riemannian metric (see Spivak, 1965, 1979, Dodson and Poston 1991)  can be 

defined on the statistical manifold corresponding to the inner product induced by the Fisher 

information matrix on the natural basis of the coordinate system  

4 

5 

6 

:  7 

       (6) 8 

9 

10 

This Riemannian metric is called the Fisher metric or the information metric. The corresponding 

geometric properties of this framework are characterized by the so-called Christoffel symbols 

 defined by the relations:  11 

,   (7) 12 

  (h=1, 2).    (8) 13 

The minimum distance between two elements  of a statistical manifold S is defined by the 

corresponding geodesic ω which is the minimum length curve that connects them. Such a curve  

14 

15 

      (9) 16 

17 satisfies the following system of 2nd order differential equations:    

   (10) 18 

under the initial conditions  . 19 

20 

21 

 

4.2 Application to WAM outputs and satellite data.   
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The significant wave height data obtained in the present study, both from satellite records and 

WAM model, have been proved in Section 3.1 to follow 2-parameter Weibull distributions. The 

corresponding parameters however seem to differ between the two data sets and to fluctuate in time 

and space.  

In this section different scenarios will be discussed, based on information geometric techniques, 

concerning the optimum way of estimating the distance between the two data sets. The obtained 

results can be exploited in assimilation or optimization procedures for better defining the involving 

cost functions targeting at the improvement of the final modeled products.  

Following the formalism presented in Section 4.1, the family of the two parameter Weibull 

distributions can be considered as a  2-dimensional statistical manifold with ξ=[α,β], Ξ = {[α,β]; α 

and β>0} and  

      (11) 12 

13 The log-likelihood function becomes:  

              (12) 14 

15 while the Fisher information matrix (Amari, 1985, Amari and Nagaoka, 2000) takes the form:  

                                      (13) 16 

Here  is the Euler Gamma. The Christoffel symbols of the 0-

connection (see Amari and Nagaoka, 2000; Arwini and Dodson 2007, 2008) in this case are:  

17 

18 



                        

(14) 

1 

2 

3 The main-general question that is raised is:  

With the Weibull parameters  and  known, which is the optimum way of estimating the 

distance between observations and WAM outputs?  
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Two scenarios are proposed.  

 

4.2.1. Working for points in the same neighborhood.  

A first approach supported by the information geometric techniques can be based on the projection 

of the distributions, which fit the data sets, to the same tangent space. Then, their distance is 

calculated based on the corresponding inner product. For example, the Weibull distribution 

followed by the satellite data obtained in the restricted area of Northwestern European coastline 

(Section 3.2) during August 2008 has shape parameter  =3.43  and scale  =2.30 m (see Tables 

9, 11). The corresponding values for WAM modeled significant wave height are 

13 

2.82 and 14 

=2.35m. Therefore, the observed and modeled data can be considered as elements u0=W(3.43, 

2.30), u

15 

16 1=W(2.82,2.35) of the statistical manifold S of all Weibull distributions (see Section 4.2) 

being projected to the same tangent space. The latter can be chosen to be the tangent space  of 

u

17 

18 

19 

0 where the inner product, and hence the distances, is defined by the Fisher information matrix at 

u0: 

                             (15) 20 

21 The correct distance between u0 and u1 would be in this case:  

15 
 



                    (16) 1 

which should replace the classical  used by least square methods in 

assimilation or other optimizations procedures.  
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In a similar way one may also estimate the distance between any elements of the same tangent 

space. The novelty comparing to the classical least square methods is the use of the Fisher 

information matrix instead of the identity, incorporating in this way the geometrical structure of the 

manifold of distributions, which itself is subordinate to information theoretic maximum likelihood 

properties.  

The present approach simplifies the estimation of the distance since there is no need of solving 

complicated systems of differential equations as those corresponding to geodesics (relation 10). 

However, an approximation error should be expected. 

 

4.2.2. Using geodesics.  

The full exploitation of Information Geometric framework can be succeeded by the use of geodesic 

curves  for the estimation of the distances on a statistical manifold S. This 

results to a system of second order differential equations (eq. 10). By substituting the values of the 

Christoffel 

15 
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 (Spivak M., 1965 and 1979, Dodson and Poston 1991) obtained for the Weibull 

statistical manifold (eq. 14), the system becomes:  
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        (17) 
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In most of the cases, this cannot be solved analytically and the use of approximation methods is 

necessary.  
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A relevant example is presented here. The Weibull distribution that fits to the satellite data obtained 

in the restricted area of Northwestern European coastline during August 2008 are used again. 

Therefore, the probability density function of the satellite records has shape parameter a=3.43 and 

scale b=2.30 m, while for the relevant WAM outputs a=2.82 and b=2.35 m. The minimum length 

curve that gives the distance between the two distributions is a two dimensional curve 

that can be obtained as the solution of the differential system:  6 
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9 with initial conditions 
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By numerically solving this nonlinear system, one reaches the solution presented in Figure 25 

which shows the required geodesic as well as a spray of other geodesics emanating from the same 

initial point (3.43,2.30).  

An attempt to visualize further the above approach is made in Figures 26 (a) and (b) where the 

statistical manifolds formed by the satellite records and WAM values (monthly values) are 

presented as elements of the non-Euclidean space that the totality of Weibull distributions define.   

 

5. Conclusions  

The results of the numerical wave prediction model WAM for an area of increased interest (the 

north Atlantic ocean) concerning the significant wave height over a period of one year were 

evaluated against corresponding satellite measurements. Special attention was given to the 

probability distribution functions formed. The outcomes were utilized in order to discuss novel 

statistical procedures for the quantification of the bias, based on a relatively new branch of 

mathematics, information geometry, which has not been exploited so far in atmospheric sciences 

and oceanography. The most important conclusions made are as follows:  
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• Similar but not identical two-parameter Weibull distributions seem to fit to the observational and 

modeled significant wave height values. In particular, the shape parameter values both for 

satellite records and WAM outputs increase as moving to offshore areas. The maximum values 

emerge at the sea area southern of Iceland. On the other hand, increased scale parameters for 

both observations and model outputs in the western coast of central Africa can be attributed to 

non uniform distribution of the sea state in this area.  

• The estimated shape parameters for WAM outputs outmatch those of satellite records in a mild 

but systematic way while the scale analogous values for the wave model outputs, concerning the 

whole area of study, are slightly underestimated indicating that the satellite records form 

stretched out distributions. 

• WAM seems slightly but consistently to overestimate the significant wave height through the 

whole study period. The same holds also for the variability of the simulated values as expressed 

by the standard deviation that constantly outmatch that of observations.  

• Non negligible differences exist between the ranges of SWH values for WAM outputs and 

observations. This can be attributed to WAM problems with swell decay as well as to the way of 

calculation (merging) of satellite records.   

• An increased part of the distribution of modeled values, compared to the corresponding 

observations, is concentrated at relatively smaller values. This positive asymmetry is highlighted 

by the increased values of skewness.  

• The variability of WAM outputs is more dependent on extreme values than satellite observations 

as the increased kurtosis indicates, especially during the summer months.   

• The parameters of the probability density functions that fit  the modeled and observational data 

appear to have significant spatial variation. As a result, the use of the same cost function in 

optimization systems for the whole domain of study is a serious simplification. In this respect 

information geometry techniques provide possible ways out.  
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• Two different scenarios for the estimation of distances between the data sets in the study are 

discussed, taking into account that the Weibull distributions form a 2-dimensional non-Euclidean 

space, in particular a Riemannian manifold, avoiding simplifications that classical statistics adopt 

(use of Euclidean distances):  

o The first approach utilizes the tangent spaces at the points of interest avoiding solving the 

complicated differential systems that arise within the information geometric framework. 

An approximation error is expected in this case. 

o  In the second scenario the proposed geometric methodology is fully exploited and the 

distances are obtained based on the geodesic curves of the statistical manifold that the data 

in study form.  

• In both cases the obtained results deviate from those resulted in the classical case.  

• An example/application of the proposed techniques to the northwestern coastline of France and 

Spain is discussed clarifying the alternative way for the estimation of distances between 

observations and modeled values.  
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 Figure Captions  

1. The study area. The red rectangle denotes the borders of the restricted region.  

2. Fitting of the 2-parameter Weibull distribution to the WAM modeled significant wave 

height data for May 2008. 

3. The shape parameter of the Weibull distributions that fit to the significant wave height 

satellite data over the North Atlantic Ocean for the months December-February.  

4. The shape parameter of the Weibull distributions that fit to the significant wave height 

satellite data over the North Atlantic Ocean for the months March-May. 

5. The shape parameter of the Weibull distributions that fit to the significant wave height 

satellite data over the North Atlantic Ocean for the months June-August. 
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6. The shape parameter of the Weibull distributions that fit to the significant wave height 

satellite data over the North Atlantic Ocean for the months September-November. 

7. The shape parameter of the Weibull distributions that fit to the WAM modeled significant 

wave height over the North Atlantic Ocean for the months December-February.  

8. The shape parameter of the Weibull distributions that fit to the WAM modeled significant 

wave height over the North Atlantic Ocean for the months March-May. 

9. The shape parameter of the Weibull distributions that fit to the WAM modeled significant 

wave height over the North Atlantic Ocean for the months June-August. 

10. The shape parameter of the Weibull distributions that fit to the WAM modeled significant 

wave height over the North Atlantic Ocean for the months September-November. 

11. The scale parameter of the Weibull distributions that fit to the significant wave height 

satellite data over the North Atlantic Ocean for the months December-February.  

12. The scale parameter of the Weibull distributions that fit to the significant wave height 

satellite data over the North Atlantic Ocean for the months March-May. 

13. The scale parameter of the Weibull distributions that fit to the significant wave height 

satellite data over the North Atlantic Ocean for the months June-August. 

14. The scale parameter of the Weibull distributions that fit to the significant wave height 

satellite data over the North Atlantic Ocean for the months September-November. 

15. The scale parameter of the Weibull distributions that fit to the WAM modeled significant 

wave height over the North Atlantic Ocean for the months December-February.  

16. The scale parameter of the Weibull distributions that fit to the WAM modeled significant 

wave height over the North Atlantic Ocean for the months March-May. 
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17. The scale parameter of the Weibull distributions that fit to the WAM modeled significant 

wave height over the North Atlantic Ocean for the months June-August. 

18. The scale parameter of the Weibull distributions that fit to the WAM modeled significant 

wave height over the North Atlantic Ocean for the months September-November. 

19. The evolution of Mean Value for WAM modeled and satellite recorded significant wave 

height in the restricted region through the whole study period. 

20. The evolution of Standard Deviation for WAM modeled and satellite recorded significant 

wave height in the restricted region through the whole study period. 

21. The evolution of Skewness for WAM modeled and satellite recorded significant wave height 

in the restricted region through the whole study period. 

22. The evolution of Kurtosis for WAM modeled and satellite recorded significant wave height 

in the restricted region through the whole study period. 

23. The shape parameter a of the Weibull distributions that fit to WAM modeled and satellite 

recorded significant wave height in the restricted region through all months of 2008. 

24. The scale parameter β (in meters) of the Weibull distributions that fit to WAM modeled and 

satellite recorded significant wave height in the restricted region through all months of 2008 
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25. The graphical representation of the geodesic  that gives the minimum length 

curve connecting the satellite observations with WAM outputs for August 2008. The blue 

line corresponds to the first component while the red to the second one.   

26. The statistical manifolds formed by the monthly values of the satellite records (a) and WAM 

outputs (b) as elements of the non-Euclidean space of all Weibull distributions. A classical 

“BlueGreenYellow” color palette has been used depending on their approximate divergence 

from annual averages. 



26 
 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

 

 

 

 

Table Captions  

1. The main statistical parameters for satellite data in the restricted area per month. 

2. The main statistical parameters for satellite data in the restricted area summarized for the 

whole study period, the summer and winter months. 

3. Percentiles for satellite data in the restricted area per month. 

4. Percentiles for satellite data in the restricted area for the whole study period, the summer and 

winter months. 

5. The main statistical parameters for WAM outputs in the restricted area per month. 

6. The main statistical parameters for WAM outputs in the restricted area summarized for the 

whole study period, the summer and winter months. 

7. Percentiles for WAM outputs in the restricted area per month. 

8. Percentiles for WAM outputs in the restricted area for the whole study period, the summer 

and winter months. 

9. Weibull parameters for satellite data in the restricted area per month. 

10. Weibull parameters for satellite data in the restricted area for the whole study period, the 

summer and winter months. 

11. Weibull parameters for WAM outputs in the restricted area per month. 

12. Weibull parameters for WAM outputs in the restricted area for the whole study period, the 

summer and winter months 
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9 Figure 1. The study area. The red rectangle denotes the borders of the restricted region. 



Fig

ure 2. Fitting of the 2-parameter Weibull distribution to the WAM modeled significant wave 

height data for May 2008. 
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Figure 3. The shape parameter of the Weibull distributions that fit to the significant wave height 
satellite data over the North Atlantic Ocean for the months December-February. 
 

 4 

5 
6 

Figure 4. The shape parameter of the Weibull distributions that fit to the significant wave height 
satellite data over the North Atlantic Ocean for the months March-May. 
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Figure 5. The shape parameter of the Weibull distributions that fit to the significant wave height 
satellite data over the North Atlantic Ocean for the months June-August. 
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Figure 6. The shape parameter of the Weibull distributions that fit to the significant wave height 
satellite data over the North Atlantic Ocean for the months September-November. 
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Figure 7. The shape parameter of the Weibull distributions that fit to the WAM modeled significant 
wave height over the North Atlantic Ocean for the months December-February. 
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Figure 8. The shape parameter of the Weibull distributions that fit to the WAM modeled significant 
wave height over the North Atlantic Ocean for the months March-May. 
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Figure 9. The shape parameter of the Weibull distributions that fit to the WAM modeled significant 
wave height over the North Atlantic Ocean for the months June-August. 
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Figure 10. The shape parameter of the Weibull distributions that fit to the WAM modeled 
significant wave height over the North Atlantic Ocean for the months September-November. 
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Figure 11. The scale parameter of the Weibull distributions that fit to the significant wave height 
satellite data over the North Atlantic Ocean for the months December-February. 
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Figure 12. The scale parameter of the Weibull distributions that fit to the significant wave height 
satellite data over the North Atlantic Ocean for the months March-May. 
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Figure 13. The scale parameter of the Weibull distributions that fit to the significant wave height 
satellite data over the North Atlantic Ocean for the months June-August. 
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Figure 14. The scale parameter of the Weibull distributions that fit to the significant wave height 
satellite data over the North Atlantic Ocean for the months September-November. 
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Figure 15. The scale parameter of the Weibull distributions that fit to the WAM modeled significant 
wave height over the North Atlantic Ocean for the months December-February. 
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Figure 16. The scale parameter of the Weibull distributions that fit to the WAM modeled significant 
wave height over the North Atlantic Ocean for the months March-May. 
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Figure 17. The scale parameter of the Weibull distributions that fit to the WAM modeled significant 
wave height over the North Atlantic Ocean for the months June-August. 
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Figure 18. The scale parameter of the Weibull distributions that fit to the WAM modeled significant 
wave height over the North Atlantic Ocean for the months September-November.  
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Figure 19. The evolution of Mean Value for WAM modeled and satellite recorded significant wave 
height in the restricted region through the whole study period. 
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Figure 20. The evolution of Standard Deviation for WAM modeled and satellite recorded 
significant wave height in the restricted region through the whole study period. 
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Figure 21. The evolution of Skewness for WAM modeled and satellite recorded significant wave 
height in the restricted region through the whole study period. 
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Figure 22. The evolution of Kurtosis for WAM modeled and satellite recorded significant wave 
height in the restricted region through the whole study period. 
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Figure 23. The shape parameter a of the Weibull distributions that fit to WAM modeled and 
satellite recorded significant wave height in the restricted region through all months of 2008. 
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Figure 24. The scale parameter β (in meters) of the Weibull distributions that fit to WAM modeled 
and satellite recorded significant wave height in the restricted region through all months of 2008.  

 4 

5 Figure 25. The graphical representation of a numerical solution spray of geodesics emanating from 
=(3.43, 2.30) including the one to (2.82, 2.35) that gives the minimum length curve 

connecting the satellite observations with WAM outputs for August 2008.    
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(a)                                                               (b)                                                                               

Figure 26. The statistical manifolds formed by the monthly values of the satellite records (a) and 
WAM outputs (b) as elements of the non-Euclidean space of all Weibull distributions. A classical 
“BlueGreenYellow” color palette has been used depending on their approximate divergence from 
annual averages 
 
 
 
 
 
 
 
Statistical 
Parameter Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
Range 6.25 5.75 8.23 4.36 3.02 3.33 3.03 4.47 4.69 4.40 6.21 6.72 
Mean 3.66 2.70 3.49 2.33 1.46 1.50 1.70 2.07 2.07 2.56 2.73 3.22 
Std. Deviation 1.16 1.06 1.42 0.79 0.53 0.50 0.61 0.78 0.92 0.79 1.25 1.15 
Coef. of Variation 0.32 0.39 0.41 0.34 0.37 0.33 0.36 0.38 0.45 0.31 0.46 0.36 
Skewness 0.24 0.49 1.14 0.44 1.15 0.83 0.84 1.06 0.82 0.55 0.83 0.75 
Kurtosis -0.31 -0.57 1.46 -0.30 1.47 0.78 0.04 0.70 0.28 -0.13 -0.01 0.46 

16 
17 
18 

Table 1. The main statistical parameters for satellite data in the restricted area per month 
 
 

Statistical 
Parameter OverAll Summer Winter
Range 5.04 3.82 6.26 
Mean 2.46 1.86 3.06 
Std. Deviation 0.91 0.69 1.14 
Coef. of Variation 0.37 0.37 0.37 
Skewness 0.76 0.86 0.66 
Kurtosis 0.32 0.49 0.15 

19 
20 

Table 2. The main statistical parameters for satellite data in the restricted area summarized for the 
whole study period, the summer and winter months 
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Percentile Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
P5 1.89 1.28 1.67 1.21 0.80 0.82 0.92 1.15 0.84 1.49 1.17 1.64 
P10 2.13 1.47 1.98 1.43 0.89 0.95 1.06 1.29 1.02 1.63 1.37 1.92 
P25 = Q1 2.74 1.86 2.52 1.76 1.08 1.14 1.27 1.50 1.34 1.94 1.74 2.41 
P50 (Median) 3.71 2.54 3.12 2.22 1.35 1.42 1.55 1.89 1.92 2.48 2.39 3.02 
P75 = Q3 4.46 3.49 4.24 2.82 1.69 1.79 1.98 2.41 2.55 3.08 3.58 3.95 
P90 5.08 4.23 5.33 3.52 2.21 2.19 2.71 3.34 3.38 3.63 4.61 4.83 
P95 5.56 4.63 6.37 3.83 2.51 2.38 2.97 3.70 3.92 4.03 5.07 5.37 

Table 3. Percentiles for satellite data in the restricted area per month. 3 

4  

Percentile OverAll Summer Winter
P5 0.62 0.44 0.81 
P10 1.24 0.96 1.52 
P25 = Q1 1.43 1.11 1.75 
P50 (Median) 1.77 1.35 2.20 
P75 = Q3 2.30 1.73 2.88 
P90 3.00 2.21 3.80 
P95 3.75 2.89 4.62 

Table 4. Percentiles for satellite data in the restricted area for the whole study period, the summer 
and winter months 
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Statistical 
Parameter Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
Range 11.28 8.69 18.27 7.09 5.55 6.35 9.11 8.59 7.64 7.47 9.26 11.06
Mean 4.06 3.13 3.99 2.54 1.66 1.74 2.00 2.11 2.28 2.74 2.92 3.57 
Std. Deviation 1.50 1.24 1.99 1.07 0.56 0.63 0.85 1.05 1.09 1.10 1.47 1.53 
Coef. of Variation 0.37 0.40 0.50 0.42 0.34 0.36 0.43 0.50 0.48 0.40 0.50 0.43 
Skewness 0.82 0.79 1.92 0.75 1.24 1.14 1.77 1.96 1.30 0.66 1.19 1.11 
Kurtosis 1.07 0.50 6.61 0.68 4.17 2.57 5.95 5.21 2.38 0.44 1.52 1.90 

Table 5. The main statistical parameters for WAM outputs in the restricted area per month 10 
11 
12 

 
 

Statistical 
Parameter OverAll Summer Winter
Range 9.20 7.39 11.01 
Mean 2.73 2.06 3.40 
Std. Deviation 1.17 0.88 1.47 
Coef. of Variation 0.43 0.42 0.43 
Skewness 1.22 1.36 1.08 
Kurtosis 2.75 3.49 2.01 
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3 
4 

Table 6. The main statistical parameters for WAM outputs in the restricted area summarized for the 
whole study period, the summer and winter months 

 
 
Percentile Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
P5 1.97 1.45 1.64 1.04 0.87 0.93 1.04 1.05 0.92 1.14 1.16 1.49 
P10 2.31 1.75 2.02 1.30 1.03 1.08 1.20 1.19 1.13 1.46 1.37 1.91 
P25 = Q1 2.94 2.25 2.68 1.79 1.30 1.29 1.44 1.44 1.51 1.96 1.84 2.57 
P50 (Median) 3.89 2.90 3.57 2.38 1.62 1.63 1.78 1.80 2.08 2.59 2.59 3.35 
P75 = Q3 4.93 3.81 4.88 3.20 1.93 2.07 2.38 2.48 2.79 3.41 3.64 4.25 
P90 6.01 4.92 6.25 3.96 2.27 2.56 3.14 3.38 3.69 4.23 4.98 5.55 
P95 6.76 5.55 7.36 4.54 2.57 2.91 3.65 4.34 4.40 4.75 5.88 6.67 

Table 7. Percentiles for WAM outputs in the restricted area per month 5 
6 
7 

 
 

Percentile OverAll Summer Winter
P5 1.23 0.98 1.48 
P10 1.48 1.16 1.80 
P25 = Q1 1.92 1.46 2.37 
P50 (Median) 2.52 1.88 3.15 
P75 = Q3 3.31 2.48 4.15 
P90 4.24 3.17 5.32 
P95 4.95 3.74 6.16 

Table 8. Percentiles for WAM outputs in the restricted area for the whole study period, the summer 
and winter months 

8 
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Weibull 
Parameters Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

a 3.70 3.06 3.16 3.48 3.53 3.81 3.53 3.43 2.74 4.01 2.69 3.49
β 4.05 3.00 3.89 2.59 1.61 1.66 1.88 2.30 2.30 2.82 3.05 3.57

Table 9. Weibull parameters for satellite data in the restricted area per month 13 
14 
15 
16 

 
 
 

Weibull 
Parameters Summer Winter OverAll 

a 3.39 3.42 3.35 
β 2.73 2.06 3.40 

Table 10. Weibull parameters for satellite data in the restricted area for the whole study period, the 
summer and winter months 

17 
18 
19 
20 
21 

 
 
 

Weibull 
Parameters Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
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a 3.34 3.08 2.70 2.78 3.64 3.52 3.17 2.82 2.67 2.97 2.53 2.88
β 4.50 3.48 4.43 2.84 1.84 1.92 2.22 2.35 2.54 3.06 3.25 3.98

Table 11. Weibull parameters for WAM outputs in the restricted area per month 1 
2 
3 
4 
5 

 
 
 
 

Weibull 
Parameters Summer Winter OverAll 

a 3.01 3.10 2.92 
β 3.03 2.29 3.78 

Table 12. Weibull parameters for WAM outputs in the restricted area for the whole study period, the 
summer and winter months 
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