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Abstract. On a smooth manifold M, the vector bundle structures of the
second order tangent bundle, T 2M bijectively correspond to linear connections.

In this paper we classify such structures for those Fréchet manifolds which

can be considered as projective limits of Banach manifolds. We investigate
also the relation between ordinary differential equations on Fréchet spaces

and the linear connections on their trivial bundle; the methodology extends

to solve differential equations on those Fréchet manifolds which are obtained
as projective limits of Banach manifolds. Such equations arise in theoretical

physics.

Introduction

For a smooth finite dimensional manifold M the structure of T 2M , the bundle of
accelerations, was studied by Dodson and Radivoiovici [4]. They proved that T 2M
admits a vector bundle structure over M if and only if M is endowed with a linear
connection. In [2] Dodson and Galanis have established the structure of T 2M for
Banach manifolds and also for those Fréchet manifolds which are projective limits
of Banach manifolds. They proved that existence of a vector bundle structure on
T 2M is equivalent to the existence on M of a linear connection in the sense of Vilms
[16]. By this means, vector bundle structures of T 2M were classified by Dodson,
Galanis and Vassiliou for the Banach case (see [3]).

In this paper we extend that classification to a large class of Fréchet manifolds.
Also, we investigate some relations between connections and ordinary differential
equations on Fréchet spaces which generalize a result of Vassiliou [15] in the Banach
case. As Galanis and Vassiliou have pointed out in [8], there is no specific method
to solve a given differential equation on Fréchet spaces. Here we introduce a method
for solving such problems and we give also a relation between these equations and
the induced connections. This method can solve a wide class of ordinary differential
equation on any Fréchet space because every Fréchet space can be considered as
a projective limit of Banach spaces. Furthermore it extends to solve differential
equations on those Fréchet manifolds which are obtained as projective limits of
Banach manifolds. We indicate how the methodology may be applied by suggesting
an approach to generalize the Earle and Eells [5] foliation theorem to a large class
of Fréchet manifolds.

There has been recent interest in the Fréchet case for various models in theoreti-
cal physics and stochastic calculus; we mention some examples. Blair [1] studied the
spaceM of all C∞-Riemannian metrics on a manifold M as an infinite-dimensional
Fréchet manifold with C∞-topology and provided certain of its geometrical prop-
erties. Sergeev [14] suggested a new realization of the homogeneous factor-space
Diff(S1)/S1, which is a Fréchet manifold. He interpreted it as the space of those
complex structures on the loop space ΩG of a compact Lie group G (regarded as a
Fréchet-Kähler manifold equipped with a canonical action of the group Diff(S1)
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by symplectomorphisms) that are compatible with the symplectic structure. Minic
and Tze [13] proposed a generalization of quantum mechanics in which the pro-
jective Hilbert space of quantum events is replaced by a ‘nonlinear Grassmannian’
Gr(Cn+1) of codimension-2 compact submanifolds of Cn+1, which is a Fréchet man-
ifold. Then it admits a symplectic structure (being a coadjoint orbit of the group of
volume-preserving diffeomorphisms of Cn+1) and a (non-integrable) almost complex
structure, which make it into an almost Kähler manifold. Kinateder and McDonald
[9] discussed the stochastic flow of certain diffeomorphisms via the Fréchet manifold
D of smoothly bounded domains in Rn with compact closure; they included also
a review of the relevant Fréchet geometry, developed the stochastic analysis and
gave a number of examples and applications. See also McDonald [12] who studied
Brownian motion in a complete Riemannian manifold M where, for each v > 0,
Mv is the Fréchet manifold of all relatively compact smooth domains D in M of
volume v; he obtained various results when M has constant curvature.

1. Preliminaries

Let M be a smooth manifold modelled on the Banach space E with the corre-
sponding atlas {(Uα, ψα)}α∈I . For each x ∈ M we define Cx = {f : (−ε, ε) −→
M ; f is smooth and f(0)=x}. For f, g ∈ Cx, we define f ∼x g iff f ′(0) = g′(0), so
TxM = Cx/∼x and TM =

⋃
x∈M TxM . It is easy to check that TM is a smooth

Banach manifold modelled on E × E. Moreover it is a vector bundle over M by
the projection πM : TM −→ M. Consider the trivialization {(π−1

M (Uα),Ψα)}α∈I
for TM and similarly the trivialization {(π−1

TM (π−1
M (Uα)), Ψ̃α)}α∈I for T(TM).

Following e.g. Vilms [16], a connection on M is a vector bundle morphism
∇ : T (TM) −→ TM with the local forms ωα : ψα(Uα) × E −→ L(E,E). Local
representation of ∇ is as follows:

∇α : ψα(Uα)× E× E× E −→ ψα(Uα)× E

with ∇α = Ψαo∇oΨ̃−1
α for α ∈ I , and the relation

∇α(y, u, v, w) = (y, w + ωα(y, u).v)

is satisfied. Furthermore ∇ is a linear connection iff {ωα}α∈I are linear with re-
spect to their second variables. This connection ∇ is completely determined by its
Christoffel symbols:

Γα : ψα(Uα) −→ L(E, L(E,E)) ≡ L2
s(E× E,E) ; α ∈ I

defined by Γα(y)[u] = ωα(y, u) for each (y, u) ∈ ψα(Uα)× E.
The necessary condition for ∇ to be well defined on chart overlaps of M is that

the Christoffel symbols satisfy the following compatibility condition;

Γα(σαβ(y))(dσαβ(y)(u), dσαβ(y)(v)) + (d2σαβ(y)(v))(u)
= dσαβ(y)(Γβ(y)(u, v))

for all (y, u, v) ∈ ψα(Uα)× E× E. Here σαβ = ψαoψ
−1
β , and d, d2 denote the first

and the second order differentials respectively.
Recalling our above definition of Cx, we define the equivalence relation ≈x as

follows, for f, g ∈ Cx,

f ≈x g ⇐⇒ f ′(0) = g′(0) and f ′′(0) = g′′(0).

Then T 2
xM = Cx/ ≈x and T 2M =

⋃
x∈M T 2

xM. Here we see that T 2
xM is a topo-

logical vector space isomorphic to E× E under the isomorphism:

φx : T 2
xM −→ E× E

[f, x]2 7−→ ((ψα ◦ f)′(0), (ψα ◦ f)′′(0)).
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However, this identification cannot be extended to a vector bundle structure on
T 2M . This can be achieved by the use of a linear connection ∇ of M by means of
the following local trivializations:

Φα : π−1
2 (Uα) −→ Uα × E× E

[f, x]2 7−→ (x, (ψα ◦ f)′(0), (ψα ◦ f)′′(0) + Γα(ψα(x))((ψα ◦ f)′(0),
(ψα ◦ f)′(0))),

where π2 : T 2M −→M sending [f, x]2 to x. In this way we see that T 2M becomes a
vector bundle over M with fibres of type E×E and the structure group GL(E×E).

Let Φα,x be the restriction of Φα to the fibres T 2
xM . Then the transition functions

of T 2M will be:

Tαβ : Uα ∩ Uβ −→ L(E× E,E× E)

x 7−→ Φα,x ◦ Φβ,x−1

More precisely, they have the form Tαβ = (d(σαβ ◦φβ), d(σαβ ◦φβ)), for more details
see [2].

2. Classification for vector bundle structures of T 2M

Here we turn to a class of Fréchet manifolds that are obtained as projective limits
of Banach manifolds. Let {M i, ϕji}i,j∈N be a projective system of Banach manifolds
modelled on the Banach spaces {Ei}i∈N respectively; we require the model spaces
also to form a projective system. Suppose that for x = (xi) ∈ M = lim←−M

i there
exists a projective system of charts {(U iα, ψiα)}i∈N such that xi ∈ U iα and the limit
lim←−U

i
α is open in M . Then, the projective limit M = lim←−Mi has a Fréchet manifold

structure modelled on F = lim←−Ei with the atlas A = {(lim←−U
i
α, lim←−ψ

i
α)}α∈I . Let

{M i, φji}i,j∈N and {N i, φ′ji}i,j∈N be two projective systems of manifolds, with
smooth maps gi : M i −→ N i such that lim←− g

i = g exists. Suppose that for each
i ∈ N ; M i and N i are endowed with linear connections ∇Mi and ∇Ni which form
the projective limits ∇M = lim←−∇Mi and ∇N = lim←−∇Ni . The latter are then linear
connections over M and N respectively.
Moreover, the next result holds:

Proposition 2.1. Let ∇Mi and ∇Ni be gi-conjugate for each i ∈ N then ∇M and
∇N are g-conjugate.

Proof. We have to show that

∇NoT (Tg) = Tgo∇M .

First we prove that lim←−∇NioT (Tgi) exists.
Let i ≤ j , then:

Tφ′ji(∇Nj ◦ T (Tgj)) = (∇Ni ◦ T (Tφ′ji))o(T (Tgi))

= ∇Nio[(T (Tgi)) ◦ T (Tφji)]

= (∇Ni ◦ T (Tgi)) ◦ T (Tφji),

hence the limit lim←−∇Ni ◦ T (Tgi) exists. Furthermore for each i ∈ N we have:

Tφ′i ◦ (∇N ◦ T (Tg)) = (∇Ni ◦ T (Tφ′i)) ◦ T (Tg) = ∇Ni ◦ T (Tgi)

where φ′i : N −→ N i are the canonical projections. As a result,

∇N ◦ T (Tg) = lim←−∇Ni ◦ T (Tgi).
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On the other hand, {Tgi ◦ ∇Mi}i∈N is a projective system of maps. Indeed for
i ≤ j :

Tφ′ji ◦ (Tgj ◦ ∇Mj ) = (Tgi ◦ Tφji) ◦ ∇Mj

= Tgi ◦ (∇Mi ◦ T (Tφji))

= (Tgi ◦ ∇Mi
) ◦ T (Tφji).

Hence lim←−Tg
i ◦ ∇Mi exists. Moreover:

Tφ′i ◦ (Tg ◦ ∇M ) = (Tgi ◦ Tφi) ◦ ∇M = Tgi ◦ ∇Mi , i ∈ N,

where φi : M −→M i are the canonical projections of M . Hence

Tg ◦ ∇M = lim←−(Tgi ◦ ∇Mi).

Based on the fact that each pair (∇Mi ,∇Ni), i ∈ N, consists of gi-conjugate con-
nections, we conclude that

∇N ◦ T (Tg) = lim←−(∇Ni ◦ T (Tgi)) = lim←−(Tgi ◦ ∇Mi) = Tg ◦ ∇M ,

hence ∇M and ∇N are indeed g-conjugate. �

Lemma 2.2. If ∇M = lim←−∇Mi , ∇N = lim←−∇Ni and ∇Mi and ∇Ni are gi-
conjugate, then T 2g : T 2M −→ T 2N is linear on the fibres.

Proof. According to [3] since ∇Mi and ∇Ni are gi-conjugate then T 2
xigi is linear

for each xi ∈M i. Since T 2
xg = lim←−T

2
xigi the result follows. �

Proposition 2.3. Let gi : M i −→ N i be smooth maps and ∇Mi and ∇Ni be gi-
conjugate for each i ∈ N. Then, T 2g : T 2M −→ T 2N is a vector bundle morphism.

Sketch of proof. As proved in [3], each T 2gi : T 2M i −→ T 2N i is a vector bundle
morphism for each i ∈ N; and since T 2g = lim←−T

2gi, we get the result.
In view of the above discussion, we deduce the following main result:

Theorem 2.4. Let gi : M i −→ M i be a diffeomorphism and ∇i and ∇′i gi-
conjugate linear connections on M i, for each i ∈ N. If ∇ = lim←−∇

i and ∇′ = lim←−∇
′i,

then the vector bundle structures on T 2M induced by ∇ and ∇′ are isomorphic.

Let (M,∇) denote the vector bundle structure of T 2M induced by ∇. For a
diffeomorphism g : M −→M we define the equivalence relation ∼g as follows:

(M,∇) ∼g (M,∇′)⇐⇒ ∇ and ∇′ are g − conjugate.
Hence if (M,∇) and (M,∇′) are in the same g-conjugate class [(M,∇)]g, their

induced vector bundle structures on T 2M are isomorphic.

Corollary 2.5. All the elements of the class [(M,∇)]g have isomorphic induced
vector bundle structures on T 2M .

3. Connections And Ordinary Differential Equations

Let E and B be Banach spaces and L = (E×R,R, pr1) be the trivial bundle over
R with fibres of type E. In [15] it is stated that we can correspond an ordinary
differential equation to a connection over the trivial bundle with the solution ξ being
the horizontal global section of the obtained connection. Furthermore, it is shown
that connections ∇ and ∇′ over L are conjugate iff the corresponding differential
equations dx/dt = A(t)x and dx/dt = B(t)y are equivalent.

Here we extend these concepts to Fréchet spaces. Let F be a Fréchet space with
F = lim←−{E

i, ρji}i,j∈N. Consider the trivial bundle L = (R× F,R, pr1) with respect
to the usual atlas A for R formed by the global chart (R, idR).
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Assume that ∇i is a linear connection over Li = (R × Ei,R, pr1) and that the
corresponding Christoffel symbols commute with the connecting morphisms ρji.
Then, ∇ = lim←−∇

i a linear connection on L = lim←−Li characterized by a single
Christoffel symbol:

Γ : R −→ L2(R× F,F).

Let A(t) = Γ(t)(., 1) where 1 is the unit of R. Then the following result holds
true:

Theorem 3.1. Linear connections of the above type are in one-to-one correspon-
dence with the ordinary differential equations dx/dt = A(t)x where the factor A
is obtained as a projective limit. Moreover for each t0 ∈ R there exists a unique
horizontal global section

ξ : R −→ R× F
with ξp(t0) = f0, where ξp : R −→ F is the principal part of ξ.

Proof. We know that ∇ = lim←−∇
i such that each ∇i is a linear connection over Li .

As it is stated in [15] each ∇i corresponds bijectively to an ordinary differential
equation dxi/dt = Ai(t)xi. Furthermore, any solution of dxi/dt = Ai(t)xi is the
principal part of the horizontal global section of ∇i, which we call ξi.

We notice firstly that Ai(ti) = Γi(ti)(., 1) where Γi is the Christoffel symbol
∇i over Li assigned to the chart (Ei, idEi). Since ∇ = lim←−∇

i we get Γ(t)(., 1) =
lim←−Γi(t)(., 1), t ∈ R. Hence, A(t) = lim←−A

i(ti) is well defined and consequently
dx/dt = A(t)x is an ordinary differential equation on Ei. (For more details see [6].)

Let ξip be the solution of dx/dt = Ai(t)x, satisfying ξip(t0) = f i0. We claim
that {ξip}i∈N is a projective system of maps and ξp = lim←− ξ

i
p is the solution of

dx/dt = A(t)x. One has first to check that:

ρjioξp
j = ξp

i

for i ≤ j. To this end, we see that

(ρji ◦ ξjp)′(t) = ρji ◦ (ξjp)
′(t) = ρji ◦ [Aj(t)](ξjp(t))

= [ρji ◦Aj(t)](ξjp(t))
= [Ai(t) ◦ ρji](ξjp(t))
= [Ai(t)](ξip(t))

Moreover, ξip(t
i
0) = f i0 and (ρjioξjp)(t0) = ρji(f j0 ) = f i0. Based on the unique-

ness of the solutions of differential equations on Banach spaces over given initial
conditions, we conclude that ρji ◦ ξjp = ξip. This implies that ξp = lim←− ξ

i
p exists.

Furthermore, it is the solution of the above-mentioned differential equation:

ξ′p(t) = (ξip
′
(ti))

i∈N = (Ai(ti)(ξip
′
(ti)))

i∈N
= A(t)(ξp(t)).

Similar calculations ensure that ξp = lim←− ξ
i
p is also the unique horizontal global

section of ∇ as a projective limit of global sections. �

Let ∇ = lim←−∇
i and ∇′ = lim←−∇

′i be two linear connections over L such that for
each i ∈ N, ∇i and ∇′i are gi-related connections on Li and g = lim←− g

i.

Theorem 3.2. With the same assumptions, let ∇ = lim←−∇
i and ∇′ = lim←−∇

′i

be two linear connections over L. Then ∇ and ∇′ are (g, idR)-related iff their
corresponding differential equations, given by dx/dt = A(t)x and dy/dt = C(t)y ,
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are equivalent i .e. there exists a smooth transformation Q : B −→ H0(F) such that
x(t) = Q(t)y(t) or equivalently,

C(t) = Q−1(t) ◦ (A(t) ◦Q(t)− Q̇(t))

for each t ∈ R.

Proof. By [15] ∇i and ∇′i are gi-related connections over Li iff dxi/dt = Ai(t)xi

and dyi/dt = Ci(t)yi are equivalent i .e.

(1) Ci(t) = (Qi)
−1

(t) ◦ (Ai(t) ◦Qi(t)− Q̇i(t)) : i ∈ N,
where Q = ε ◦Q∗, Q∗ = (Qi)i∈N and ε is the natural morphism

ε : H0(F) −→ L(F)

(li)i∈N 7−→ lim←− l
i

Hence (1) implies that: ∇i and ∇′i are gi-related iff x(t) = Q(t)y(t). �

Note that the existence of intrinsic obstacles in the structure of the space of
continuous linear mappings L(F), which drops out of the category of Fréchet spaces,
leads us to replace it with the Fréchet space H(F).

H(F) = {(li)i∈N ∈
∞∏
i=1

L(Ei) : lim←− l
i exists}

More precisely, H(F) can be considered as the projective limit of the Banach spaces:

Hi(F) := {(l1, ..., li) ∈
i∏

j=1

L(Ej) : ρjk ◦ lj = lk ◦ ρjk; for k ≤ j ≤ i}.

The work presented in this paper can be applied in order to obtain a potentially
useful Floquet − Liapunov theorem in Fréchet spaces:

Corollary 3.3. Let ∇ = lim←−∇
i be a linear connection over L with periodic coeffi-

cient A. Then there exist a linear connection ∇′ with constant Christoffel symbols,
where ∇ and ∇′ are (g, idR)− related.

Proof. According to [8] the differential equation ẋ(t) = A(t)x(t) with periodic co-
efficient A is equivalent with the differential equation ẏ(t) = B(t)y(t) such that B
is constant. Let ∇′ be the linear connection over L assigned to B then, by Theorem
3.2, ∇ and ∇′ are (g, idR)− related. �

4. The Earle and Eells Foliation Theorem in Fréchet spaces

The target here is to indicate a possible generalization of the following result to
a wide class of Fréchet manifolds:

Theorem 4.1 (Earle and Eells [5]). Let (X,α), (Y, β) be Finsler C1-manifolds
modeled on Banach spaces, and suppose that (X,α) is complete. Let f : X → Y
be a surjective C1-map which foliates X. If there is a, locally bounded over Y ,
Lipschitz splitting of the sequence

0 −→ Kerf∗ −→ TX
f∗−→ f−1(TY ) −→ 0,

where f∗ stands for the differential of f at x, then f is a locally C0-trivial fibration.

The proof of Theorem 4.1 is strongly based on properties of differential equations
in Banach spaces, used to construct coherent liftings of paths. As a result, any
attempt to generalize it to the Fréchet framework encounters serious difficulties.
This is because the local structure of the space models do not admit a general
solvability theory for ordinary differential equations analogous to that of the Banach
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case. Indeed, in a Fréchet space an initial value problem may have no solution, a
single one or multiple solutions.

A way out of these difficulties is proposed here for a wide class of Fréchet man-
ifolds: those that can be obtained as projective limits of Banach corresponding
factors (see [7, 2]). To be more precise, we consider the manifolds X,Y to be
limits of a projective system of Banach Finsler manifolds: X = lim←−{(X

i, αi)}i∈N,

Y = lim←−{(Y
i, βi)}i∈N. Then, suppose that X and Y can be endowed with general-

ized Fréchet-Finsler structures in which the induced norms on the tangent spaces
are replaced by sequences of semi-norms.

If this is the case, then a corresponding limit of mappings f = lim←− f
i : X → Y

satisfying the properties of the previous theorem, can be realized as a projective
limit of C1-factors f i : Xi → Y i, i ∈ N, where each of factor satisfies also the
assumptions of Theorem 4.1. It follows that a sequence of C0-trivial fibrations will
be obtained and it will projectively converge to f. Taking into account that the
notion of triviality on the fibers is compatible with projective limits, one obtains
this property also for f, avoiding the use of the pathological differential equations
on Fréchet spaces.

Note that if the domain manifold X is assumed to be Banach modeled and Y
a Finsler manifold as above, then the result obtains for every surjective C1-map f
which foliates X.
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