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Abstract. Some recent work in Fréchet geometry is briefly reviewed. In particular
an earlier result on the structure of second tangent bundles in the finite dimensional
case was extended to infinite dimensional Banach manifolds and Fréchet manifolds that
could be represented as projective limits of Banach manifolds. This led to further results
concerning the characterization of second tangent bundles and differential equations in
the more general Fréchet structure needed for applications. A summary is given of
recent results on hypercyclicity of operators on Fréchet spaces.
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1 Introduction

Dodson and Radivoiovici [22, 23] proved that in the case of a finite n-dimensional manifold M ,
a vector bundle structure on T 2M can be well defined if and only if M is endowed with a linear
connection: T 2M becomes then and only then a vector bundle over M with structure group the
general linear group GL(2n;R). The manifolds M that admit linear connections are precisely the
paracompact ones. Manifolds with connections form a full subcategory Man∇ of the category
Man of smooth manifolds and smooth maps; the constructions in the above theorems [22] provide
a functor Man∇ −→ V Bun [23]. A linear connection is a splitting of TLM, which then induces
splitting in the second jet bundle J2M (called a dissection by Ambrose et al. [5]) and we get also
a corresponding splitting in T 2L2M.

Dodson and Galanis [17] extended the results to manifolds M modeled on an arbitrarily chosen
Banach space E. Using the Vilms [48] point of view for connections on infinite dimensional vector
bundles and a new formalism, it was proved that T 2M can be thought of as a Banach vector bundle
over M with structure group GL(E × E) if and only if M admits a linear connection. The case
of non-Banach Fréchet modeled manifolds was investigated [17] but there are intrinsic difficulties
with Fréchet spaces. These include pathological general linear groups, which do not even admit
reasonable topological group structures. However, every Fréchet space admits representation as
a projective limit of Banach spaces and under certain conditions this can persist into manifold
structures. By restriction to those Fréchet manifolds which can be obtained as projective limits
of Banach manifolds [24], it is possible to endow T 2M with a vector bundle structure over M
with structure group a new topological group, that in a generalized sense is of Lie type. This
construction is equivalent to the existence on M of a specific type of linear connection characterized
by a generalized set of Christoffel symbols. We outline the methodology and a range of results in
subsequent sections but first we mention what makes the Fréchet case important but difficult.
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In a number of cases that have significance in global analysis and physical field theory, Banach
space representations break down and we need Fréchet spaces, which have weaker requirements
for their topology, see for example Smolentsev [44] and Clarke [14] for the metric geometry of
the Fréchet manifold of all C∞ Riemannian metrics on a fixed closed finite-dimensional orientable
manifold. For background to the theory see Hamilton [30] and Neeb [37], Steen and Seebach [45].
However, there is a price to pay for these weaker structural constraints: Fréchet spaces lack a
general solvability theory of differential equations, even linear ones; also, the space of continuous
linear mappings drops out of the category while the space of linear isomorphisms does not admit
a reasonable Lie group structure. We shall see that these shortcomings can be worked round to a
certain extent. The developments described in this short review will be elaborated in detail in the
forthcoming monograph by Dodson, Galanis and Vassilliou [21].

1.1 Fréchet spaces

A seminorm on (eg for definiteness a real) vector space X is a map p : X → R such that

p(x) ≥ 0, (i)

p(x+ y) ≤ p(x) + p(y), (ii)

p(λx) = |λ| p(x), (iii)

for every x, y ∈ X and λ ∈ R.

A family of seminorms Γ = {pα}α∈I on X defines a unique topology TΓ compatible with the vector
structure of X. The neighborhood base BΓ of TΓ is determined by defining

S(∆, ε) = {x ∈ F : p(x) < ε, ∀ p ∈ ∆}
BΓ = {S(∆, ε) : ε > 0 and ∆ a finite subset of Γ} .

The topology TΓ induced on X by p is the largest making all the seminorms continuous but it is
not necessarily Hausdorff. In fact (X, TΓ) is a locally convex topological vector space and the local
convexity of a topology on X is its subordination to a family of seminorms. Hausdorffness requires
the further property

x = 0⇔ p(x) = 0, ∀p ∈ Γ.

Then it is metrizable if and only if the family of seminorms is countable.

Convergence of a sequence (xn)n∈N in X is dependent on all the seminorms of Γ

xn → x⇔ p(xn − x)→ 0, ∀p ∈ Γ.

Completeness is if and only if we have convergence in X of every sequence (xn)n∈N in X with

lim
n.m→∞

p(xn − xm) = 0; ∀ p ∈ Γ.

Definition 1.1. A Fréchet space is a topological vector space F that is locally convex, Hausdorff,
metrizable and complete.

So, every Banach space is a Fréchet space, with just one seminorm and that one is a norm. More
interesting examples include the following:

• The space R∞ =
∏
n∈N
Rn, endowed with the cartesian topology, is a Fréchet space with

corresponding family of seminorms

{pn(x1, x2, ...) = |x1|+ |x2|+ ...+ |xn|}n∈N .
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Metrizability can be established by putting

d(x, y) =
∑
i

|xi − yi|
2i(1 + |xi − yi|)

. (1)

In R∞ the completeness is inherited from that of each copy of the real line. For if x = (xi) is
Cauchy in R∞ then for each i, (xmi ),m ∈ N is Cauchy in R and hence converges, to Xi say,
and (Xi) = X ∈ R∞ with d(xi, Xi) → 0 as i → ∞. Separability arises from the countable
dense subset of elements having finitely many rational components and the remainder zero;
second countability comes from metrizability. Hausdorfness implies that a compact subset
of a Fréchet space is closed; a closed subspace is a Fréchet space and a quotient by a closed
subspace is a Fréchet space. In fact, R∞ is a special case from a classification for Fréchet
spaces [37]. For each seminorm pn = || ||n we can define the normed subspace Fn = F/p−1

n (0)
by factoring out the null space of pn. Then, the seminorm requirement (1.1) provides a linear
injection into the product of normed spaces

p : F →
∏
n∈N

Fn : f 7→ (pn(f))n∈N (2)

and the completeness of F is equivalent to the closedness of p(V ) in the Banach product of
the closures Fn and p extends to an embedding of F in this product. This embedding can be
used to construct limiting processes for geometric structures of interest in Fréchet manifolds
modelled on F.

• More generally, any countable cartesian product of Banach spaces F =
∏
n∈N En is a Fréchet

space with topology defined by the seminorms (qn)n∈N, given by

qn(x1, x2, ...) =

n∑
i=1

‖xi‖i ,

where ‖ · ‖i denotes the norm of the i-factor Ei.

• The space of continuous functions C0(R,R) is a Fréchet space with seminorms (pn)n∈N defined
by

pn(f) = sup
{
|f(x)| , x ∈ [−n, n]

}
.

• The space of smooth functions C∞(I,R), where I is a compact interval of R, is a Fréchet
space with seminorms defined by

pn(f) =

n∑
i=0

sup
{ ∣∣Dif(x)

∣∣ , x ∈ I}.
• The space C∞(M,V ), of smooth sections of the vector bundle V over compact smooth

Riemannian manifold M with covariant derivative ∇, is a Fréchet space with

||f ||n =

n∑
i=0

supx|∇if(x)|, for n ∈ N. (3)

• Fréchet spaces of sections arise naturally as configurations of a physical field. Then the
moduli space, consisting of inequivalent configurations of the physical field, is the quotient
of the infinite-dimensional configuration space X by the appropriate symmetry gauge group.
Typically, X is modelled on a Fréchet space of smooth sections of a vector bundle over a
closed manifold.
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• See Omori [38, 39] and Smolentsev [44] for further discussion of Lie-Fréchet groups of dif-
feomorphisms of closed Riemannian manifolds as ILH-manifolds, that is as inverse (or pro-
jective) limits of Hilbert manifolds; unlike Fréchet manifolds, Hilbert manifolds do support
the main theorems of calculus. The treatise of Smolentsev [44] gives much detail and a large
bibliography.

2 Banach second tangent bundle

Let M be a C∞−manifold modeled on a Banach space E and {(Uα, ψα)}α∈I a corresponding atlas.
The latter gives rise to an atlas {(π−1

M (Uα),Ψα)}α∈I of the tangent bundle TM of M with

Ψα : π−1
M (Uα) −→ ψα(Uα)× E : [c, x] 7−→ (ψα(x), (ψα ◦ c)′(0)),

where [c, x] stands for the equivalence class of a smooth curve c of M with c(0) = x and

(ψα ◦ c)′(0) = [d(ψα ◦ c)(0)](1).

The corresponding trivializing system of T (TM) is denoted by

{(π−1
TM (π−1

M (Uα)), Ψ̃α)}α∈I .

Adopting the formalism of Vilms [48], a connection on M is a vector bundle morphism:

∇ : T (TM) −→ TM

with the additional property that the mappings ωα : ψα(Uα) × E → L(E,E) defined by the local
forms of ∇ :

∇α : ψα(Uα)× E× E× E→ ψα(Uα)× E

with ∇α := Ψα ◦ ∇ ◦ (Ψ̃α)−1, α ∈ I, via the relation

∇α(y, u, v, w) = (y, w + ωα(y, u) · v),

are smooth. Furthermore, ∇ is a linear connection on M if and only if {ωα}α∈I are linear with
respect to the second variable.

Such a connection ∇ is fully characterized by the family of Christoffel symbols {Γα}α∈I , which
are smooth mappings

Γα : ψα(Uα) −→ L(E,L(E,E))

defined by Γα(y)[u] = ωα(y, u), (y, u) ∈ ψα(Uα)× E.

The requirement that a connection is well defined on the common areas of charts of M , yields the
Christoffel symbols satisfying the following compatibility condition:

Γα(σαβ(y))(dσαβ(y)(u))[d(σαβ(y))(v)] + (d2σαβ(y)(v))(u) =
= dσαβ(y)((Γβ(y)(u))(v)),

(4)

for all (y, u, v) ∈ ψα(Uα ∩ Uβ) × E × E, and d, d2 stand for the first and the second differential
respectively. Here by σαβ we denote the diffeomorphisms ψα ◦ ψ−1

β of E. For further details and
the relevant proofs see [48].

Let M be a smooth manifold modeled on the Banach space E and {(Uα, ψα)}α∈I a corresponding
atlas. For each x ∈ M we define the following equivalence relation on Cx = {f : (−ε, ε) → M | f
smooth and f(0) = x, ε > 0}:

f ≈x g ⇔ f
′
(0) = g′(0) and f ′′(0) = g′′(0), (5)
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where by f
′

and f
′′

we denote the first and the second, respectively, derivatives of f :

f ′ : (−ε, ε)→ TM : t 7−→ [df(t)](1)

f ′′ : (−ε, ε)→ T (TM) : t 7−→ [df ′(t)](1).

The tangent space of order two of M at the point x is the quotient T 2
xM = Cx/ ≈x and the tangent

bundle of order two of M is the union of all tangent spaces of order 2: T 2M := ∪
x∈M

T 2
xM . Of

course, T 2
xM can be thought of as a topological vector space isomorphic to E×E via the bijection

T 2
xM

'←→ E× E : [f, x]2 7−→ ((ψα ◦ f)′(0), (ψα ◦ f)′′(0)),

where [f, x]2 is the equivalence class of f with respect to ≈x. However, this structure depends on
the choice of the chart (Uα, ψα), hence a definition of a vector bundle structure on T 2M cannot
be achieved by the use of the aforementioned bijections. The most convenient way to overcome
this obstacle is to assume that the manifold M is endowed with the additional structure of a linear
connection.

Theorem 2.1. For every linear connection ∇ on the manifold M , T 2M becomes a Banach vector
bundle with structure group the general linear group GL(E× E).

Proof. Let π2 : T 2M → M be the natural projection of T 2M to M with π2([f, x]2) = x and
{Γα : ψα(Uα) −→ L(E,L(E,E))}a∈I the Christoffel symbols of the connection D with respect to
the covering {(Ua, ψa)}a∈I of M . Then, for each α ∈ I, we define the mapping Φα : π−1

2 (Uα) −→
Uα × E× E with

Φα([f, x]2) = (x, (ψα ◦ f)′(0), (ψα ◦ f)′′(0) + Γα(ψα(x))((ψα ◦ f)′(0))[(ψα ◦ f)′(0)]).

These are obviously well defined and injective mappings. They are also surjective since every
element (x, u, v) ∈ Uα × E × E can be obtained through Φα as the image of the equivalence class
of the smooth curve

f : R→ E : t 7→ ψα(x) + tu+
t2

2
(v − Γα(ψα(x))(u)[u]),

appropriately restricted in order to take values in ψα(Uα). On the other hand, the projection of
each Φα to the first factor coincides with the natural projection π2 : pr1 ◦Φα = π2. Therefore, the
trivializations {(Uα,Φα)}a∈I define a fibre bundle structure on T 2M and we need now to focus on
the behavior of the mappings Φα on areas of M that are covered by common domains of different
charts. Indeed, if (Uα, ψα), (Uβ , ψβ) are two such charts, let (π−1

2 (Uα),Φα), (π−1
2 (Uβ),Φβ) be the

corresponding trivializations of T 2M . Taking into account the compatibility condition (1) satisfied
by the Christoffel symbols {Γα} we see that:

(Φα ◦ Φ−1
β )(x, u, v) = Φα([f, x]2),

where (ψβ ◦ f)′(0) = u and (ψβ ◦ f)′′(0) + Γβ(ψβ(x))(u)[u] = v. As a result,

(Φα ◦ Φ−1
β )(x, u, v) =

((ψα ◦ ψ−1
β )(ψβ(x)), d(ψα ◦ ψ−1

β ◦ ψβ ◦ f)(0)(1), d2(ψα ◦ ψ−1
β ◦ ψβ ◦ f)(0)(1, 1))+

Γα((ψα ◦ ψ−1
β )(ψβ(x)))(d(ψα ◦ ψ−1

β ◦ ψβ ◦ f)(0)(1))[d(ψα ◦ ψ−1
β ◦ ψβ ◦ f)(0)(1)] =

(σαβ(ψβ(x)), dσαβ(ψβ(x))(u), dσαβ(ψβ(x))(d2(ψβ ◦ f)(0)(1, 1))

+d2σαβ(ψβ(x))(u)[u] + Γα(σαβ(ψβ(x)))(dσαβ(ψβ(x))(u))[dσαβ(ψβ(x))(u)]) =
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(σαβ(ψβ(x)), dσαβ(ψβ(x))(u), dσαβ(ψβ(x))(d2(ψβ ◦ f)(0)(1, 1) + Γβ(ψβ(x))(u)[u]) =

= (σαβ(ψβ(x)), dσαβ(ψβ(x))(u), dσαβ(ψβ(x))(v)),

where by σαβ we denote again the diffeomorphisms ψα ◦ ψ−1
β . Therefore, the restrictions to the

fibres
Φα,x ◦ Φ−1

β,x : E× E→ E× E :(u, v) 7−→ (Φα ◦ Φ−1
β )|π−1

2 (x)(u, v)

are linear isomorphisms and the mappings:

Tαβ : Uα ∩ Uβ → L(E× E,E× E) : x 7−→ Φα,x ◦ Φ−1
β,x

are smooth since Tαβ = (dσαβ ◦ ψβ)× (dσαβ ◦ ψβ) holds for each α, β ∈ I.

As a result, T 2M is a vector bundle over M with fibres of type E × E and structure group
GL(E× E). Moreover, T 2M is isomorphic to TM × TM since both bundles are characterized by
the same cocycle {(dσαβ ◦ ψβ)× (dσαβ ◦ ψβ)}α,β∈I of transition functions.

The converse of the theorem was proved also in [17]. These results coincide in the finite dimensional
case with the earlier result since the corresponding transition functions are identical (see [22]
Corollary 2).

The finite dimensional results [22, 23] on the frame bundle of order two

L2(M) := ∪
x∈M
Lis(E× E, T 2

xM),

were extended also to the Banach manifold M by Dodson and Galanis [18]:

Theorem 2.2. Every linear connection ∇ of the second order tangent bundle T 2M corresponds
bijectively to a connection ω of L2(M).

3 Fréchet second tangent bundle

Let F1 and F2 be two Hausdorff locally convex topological vector spaces, and let U be an open
subset of F1. A continuous map f : U → F2 is called differentiable at x ∈ U if there exists a
continuous linear map Df(x) : F1 → F2 such that

R(t, v) :=

{
1
t (f(x+ tv)− f(x)−Df(x)(tv)) , t 6= 0

0, t = 0

is continuous at every (0, v) ∈ R× F1. The map f will be said to be differentiable if it is differ-
entiable at every x ∈ U . We call Df(x) the differential (or derivative) of f at x. As in classical
(Fréchet) differentiation, Df(x) is uniquely determined, see Leslie [34] and [35] for more details.

A map f : U → F2, as before, is called C1-differentiable if it is differentiable at every point x ∈ U ,
and the (total) differential or (total) derivative

Df : U × F1 → F2 : (x, v) 7→ Df(x)(v)

is continuous.

This total differential Df does not involve the space of continuous linear maps L(F1,F2), thus
avoiding the possibility of dropping out of the working category when F1 and F2 are Fréchet spaces.
The notion of Cn-differentiability (n ≥ 2) can be defined by induction and C∞-differentiability
follows.
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Using the methodology of Galanis and Vassiliou [25, 47] for tangent and frame bundles, a vector
bundle structure was obtained on the second order tangent bundles for those Fréchet manifolds
which can be obtained as projective limits of Banach manifolds [17]. Let M be a smooth manifold
modeled on the Fréchet space F. Taking into account that the latter always can be realized as a
projective limit of Banach spaces {Ei; ρji}i,j∈N (i.e. F ∼= lim←−E

i) we assume that the manifold itself

is obtained as the limit of a projective system of Banach modeled manifolds {M i;ϕji}i,j∈N. Then,
it was proved [17] that the second order tangent bundles {T 2M i}i∈N form also a projective system
with limit (set-theoretically) isomorphic to T 2M. We define a vector bundle structure on T 2M by
means of a certain type of linear connection on M. The problems concerning the structure group of
this bundle are overcome by the replacement of the pathological GL(F×F) by the new topological
(and in a generalized sense smooth Lie) group:

H0(F× F) := {(li)i∈N ∈
∞∏
i=1

GL(Ei×Ei) : lim←− l
i exists}.

Precisely, H0(F× F) is a topological group that is isomorphic to the projective limit of the Banach-
Lie groups

H0
i (F× F) := {(l1, l2, ..., li)i∈N ∈

i∏
k=1

GL(Ek×Ek) : ρjk ◦ lj = lk ◦ ρjk (k ≤ j ≤ i)}.

Also, it can be considered as a generalized Lie group via its embedding in the topological vector
space L(F× F).

Theorem 3.1. If a Fréchet manifold M = lim←−M
i is endowed with a linear connection ∇ that

can be realized also as a projective limit of connections ∇ = lim←−∇
i, then T 2M is a Fréchet vector

bundle over M with structure group H0(F× F).

Proof. Following the terminology established above, we consider {(Uα = lim←−U
i
α, ψα = lim←−ψ

i
α)}α∈I

an atlas of M . Each linear connection ∇i (i ∈ N), which is naturally associated to a family of
Christoffel symbols {Γiα : ψiα(U iα) → L(Ei,L(Ei,Ei))}α∈I , ensures that T 2M i is a vector bundle
over M i with fibres of type Ei. This structure, as already presented in Theorem 2.1, is defined by
the trivializations:

Φiα : (πi2)−1(U iα) −→ U iα × Ei × Ei,
with

Φiα([f, x]i2) = (x, (ψiα ◦ f)′(0), (ψiα ◦ f)′′(0) + Γiα(ψiα(x))((ψiα ◦ f)′(0))[(ψiα ◦ f)′(0)]); α ∈ I.

The families of mappings {gji}i,j∈N, {ϕji}i,j∈N, {ρji}i,j∈N are connecting morphisms of the pro-
jective systems T 2M = lim←−(T 2M i), M = lim←−M

i, F = lim←−E
i respectively. These projections

{πi2 : T 2M i →M i}i∈N satisfy
ϕji ◦ πj2 = πi2 ◦ gji (j ≥ i)

and the trivializations {Φiα}i∈N

(ϕji × ρji × ρji) ◦ Φjα = Φiα ◦ gji (j ≥ i).

We obtain the surjection π2 = lim←−π
i
2 : T 2M −→M and,

Φα = lim←−Φiα : π−1
2 (Uα) −→ Uα × F× F (α ∈ I)

is smooth, as a projective limit of smooth mappings, and its projection to the first factor coincides
with π2. The restriction to a fibre π−1

2 (x) of Φα is a bijection since Φα,x := pr2 ◦ Φα|π−1
2 (x) =

lim←−(pr2 ◦ Φiα|(πi
2)−1(x)).
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The corresponding transition functions {Tαβ = Φα,x◦Φ−1
β,x}α,β∈I can be considered as taking values

in the generalized Lie group H0(F × F), since Tαβ = ε ◦ T ∗αβ , where {T ∗αβ}α,β∈I are the smooth
mappings

T ∗αβ : Uα ∩ Uβ → H0(F× F) : x 7−→ (pr2 ◦ Φiα|(πi
2)−1(x))i∈N

with ε the natural inclusion

ε : H0(F× F)→ L(F× F) : (li)i∈N 7−→ lim←− l
i.

Hence, T 2M admits a vector bundle structure over M with fibres of type F×F and structure group
H0(F×F). This bundle is isomorphic to TM × TM since they have identical transition functions:

Tαβ(x) = Φα,x ◦ Φ−1
β,x = (d(ψa ◦ ψ−1

β ) ◦ ψβ)(x)× (d(ψa ◦ ψ−1
β ) ◦ ψβ)(x)

Also, the converse is true:

Theorem 3.2. If T 2M is an H0(F×F)−Fréchet vector bundle over M isomorphic to TM ×TM ,
then M admits a linear connection which can be realized as a projective limit of connections.

4 Fréchet second frame bundle

Let M = lim←−M
i be a manifold with connecting morphisms {ϕji : M j → M i}i,j∈N and Fréchet

space model the limit F of a projective system of Banach spaces {Fi; ρji}i,j∈N. Following the results
obtained in [17], if M is endowed with a linear connection ∇ = lim←−∇

i, then T 2M admits a vector

bundle structure over M with fibres of Fréchet type F× F. Then T 2M becomes also a projective
limit of manifolds via the identification T 2M ' lim←−T

2M i.

Let

F2M i = ∪
xi∈Mi

{(hk)k=1,...,i : hk ∈ Lis(Fk × Fk, T 2
ϕik(xi)M

k) and

gmk ◦ hm = hk ◦ (ρmk × ρmk), i ≥ m ≥ k}.

We replace the pathological general linear group GL(F) by

H0(F) := H0(F,F) = {(li)i∈N ∈
∞∏
i=1

GL(Fi) : lim←− l
i exists}.

The latter can be thought of also as a generalized Fréchet Lie group by being embedded in H(F) :=
H(F,F). Then [19],

Theorem 4.1. F2M i is a principal fibre bundle over M i with structure group the Banach Lie
group Hi

0(F× F) := Hi
0(F× F,F× F).

The limit lim←−F
2M i is a Fréchet principal bundle over M with structure group H0(F× F).

We call the generalized bundle of frames of order two of the Fréchet manifold M = lim←−M
i the

principal bundle

F2(M) := lim←−F
2M i.

This is a natural generalization of the usual frame bundle and it follows
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Theorem 4.2. For the action of the group H0(F×F) on the right of the product F2(M)×(F×F) :

((hi), (ui, vi))i∈N · (gi)i∈N = ((hi ◦ gi), (gi)−1(ui, vi))i∈N,

the quotient space F2M × (F× F)�H0(F× F) is isomorphic with T 2M .

Consider a connection of F2(M) represented by the 1-form ω ∈ Λ1(F2(M),L(F×F)), with smooth
atlas {(Uα = lim←−U

i
α, ψα = lim←−ψ

i
α)}a∈I of M , {(p−1(Uα),Ψα)}a∈I trivializations of F2(M) and

{ωα := s∗αω}a∈I the corresponding local forms of ω obtained as pull-backs with respect to the
natural local sections {sα} of {Ψα}. Then a (unique) linear connection can be defined on T 2M by
means of the Christoffel symbols

Γα : ψα(Uα)→ L(F× F,L(F,F× F))

with ([Γα(y)](u))(v) = ωα(ψ−1
α (y))(Tyψ

−1
α (v))(u), (y, u, v) ∈ ψα(Uα)× F× F× F.

However, in the framework of Fréchet bundles an arbitrary connection is not always easy to han-
dle, since Fréchet manifolds and bundles lack a general theory of solvability for linear differential
equations. Also, Christoffel symbols (in the case of vector bundles) or the local forms (in principal
bundles) are affected in their representation of linear maps by the fact that continuous linear map-
pings of a Fréchet space do not remain in the same category. Galanis [25, 26] solved the problem
for connections that can be obtained as projective limits and we obtain [19]

Theorem 4.3. Let ∇ be a linear connection of the second order tangent bundle T 2M = lim←−T
2M i

that can be represented as a projective limit of linear connections ∇i on the (Banach modelled)
factors. Then ∇ corresponds to a connection form ω of F2M obtained also as a projective limit.

Areas of application were outlined in [19].

5 Connection choice

Dodson, Galanis and Vassiliou [20] studied the way in which the choice of connection influenced the
structure of the second tangent bundle over Fréchet manifolds, since each connection determines
one isomorphism of T 2M ≡ TM

⊕
TM. They defined the second order differential T 2f of a

smooth map g : M → N between two manifolds M and N . In contrast to the case of the first
order differential Tg, the linearity of T 2g on the fibres (T 2

xg : T 2
xM → T 2

g(x)N , x ∈ M) is not
always ensured but they proved a number of results.

The connections ∇M and ∇N are called g-conjugate [46] (or g-related) if they commute with the
differentials of g :

Tg ◦ ∇M = ∇N ◦ T (Tg). (6)

Locally
Tg(φα(x))(ΓMα (φα(x))(u)(u)) =

ΓNβ (g(φα(x)))(Tg(φα(x))(u))(Tg(φα(x))(u)) + T (Tg)((φα(x))(u, u),
(7)

for every (x, u) ∈ Uα × E. For g-conjugate connections ∇M and ∇N the local expression of T 2
xg

reduces to
(Ψβ,g(x) ◦ T 2

xg ◦ Φ−1
a,x)(u, v) = (DG(φα(x))(u), DG(φα(x))(v)). (8)

Theorem 5.1. Let T 2M , T 2N be the second order tangent bundles defined by the pairs (M,∇M ),
(N,∇N ), and let g : M → N be a smooth map. If the connections ∇M and ∇N are g-conjugate,
then the second order differential T 2g : T 2M → T 2N is a vector bundle morphism.

Theorem 5.2. Let ∇, ∇′ be two linear connections on M . If g is a diffeomorphism of M such
that ∇ and ∇′ are g-conjugate, then the vector bundle structures on T 2M , induced by ∇ and ∇′,
are isomorphic.
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6 Differential equations

The importance of Fréchet manifolds arises from their ubiquity as quotient spaces of bundle sections
and hence as environments for differential equations on such spaces. This context was addressed
next in [1] and those authors provided a new way of representing and solving a wide class of
evolutionary equations on Fréchet manifolds of sections.

First [1] considered a Banach manifold M, and defined an integral curve of ξ as a smooth map
θ : J →M , defined on an open interval J of R, if it satisfies the condition

T 2
t θ(∂t) = ξ(θ(t)). (9)

Here ∂t is the second order tangent vector of T 2
t R induced by a curve c : R → R with c′(0) =

1, c′′(0) = 1. If M is simply a Banach space E with differential structure induced by the global
chart (E, idE), then the generalization is clear since the above condition reduces to the second
derivative of θ:

T 2
t θ(∂t) = θ′′(t) = D2θ(t)(1, 1).

Then the following were proved [1].

Theorem 6.1. Let ξ be a second order vector field on a manifold M modeled on Banach space E.
Then, the existence of an integral curve θ of ξ is equivalent to the solution of a system of second
order differential equations on E.

Of course, these second order differential equations depend not only on the choice of the second
order vector field but also the choice of the linear connection that underpins the vector bundle
structure. In the case of a Banach manifold that is a Lie group, M = (G, γ),

Theorem 6.2. Let v be any vector of the second order tangent space of G over the unitary element.
Then, a corresponding left invariant second order vector field ξ of G may be constructed. Also,
every monoparametric subgroup β : R → G is an integral curve of the second order left invariant
vector field ξ2 of G that corresponds to β̈(0).

Extending this to a Fréchet manifold M that is the projective limit of Banach manifolds [17],
yielded the result:

Theorem 6.3. Every second order vector field ξ on M obtained as projective limit of second order
vector fields {ξi on M i}i∈N admits locally a unique integral curve θ satisfying an initial condition
of the form θ(0) = x and Ttθ(∂t) = y, x ∈M, y ∈ Tθ(t)M , provided that the components ξi admit
also integral curves of second order.

7 Hypercyclicity

A continuous operator T on a topological vector space E is cyclic if for some f ∈ E the span
of {Tnf, n ≥ 0} is dense in E. Also, T is hypercyclic if, for some f, called a hypercyclic vector,
{Tnf, n ≥ 0} is dense in E, and supercyclic if the projective space orbit {λTnf, λ ∈ C, n ≥ 0} is
dense in E. These properties are called weakly hypercyclic, weakly supercyclic respectively, if T has
the property with respect to the weak topology. For example, the translation by a fixed nonzero
z ∈ C is hypercyclic on the Fréchet space H(C) of entire functions, and so is the differentiation
operator f 7→ f ′. Any power Tm of a hypercyclic linear operator is hypercyclic, Ansari [4]. Finite
dimensional spaces do not admit hypercyclic operators, Kitai [33].

More generally, a sequence of linear operators {Tn} on a topological is called hypercyclic if, for
some f ∈ E, the set {Tnf, n ∈ N} is dense in E; see Chen and Shaw [13] for a discussion of related
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properties. The sequence {Tn} is said to satisfy the Hypercyclicity Criterion for an increasing
sequence {n(k)} ⊂ N if there are dense subsets X0, Y0 ⊂ E satisfying:

(∀f ∈ X0) Tn(k)f → 0

(∀g ∈ Y0) there is a sequence {u(k)} ⊂ E such that u(k)→ 0 and Tn(k)u(k)→ 0.

Bes and Peris [11] proved that on a separable Fréchet space F a continuous linear operator T
satisfies the Hypercyclicity Criterion if and only if T ⊕ T is hypercyclic on F ⊕ F. Moreover, if T
satisfies the Hypercyclicity Criterion then so does every power Tn for n ∈ N.

The book by Bayart and Matheron [7] provides more details of the theory of hypercyclic operators.
Bermúdez et al. [8] investigated hypercyclicity, topological mixing and chaotic maps on Banach
spaces. Bernal and Grosse-Erdmann studied the existence of hypercyclic semigroups of continuous
operators on a Banach space. Albanese et al. [3] considered cases when it is possible to extend
Banach space results on C0-semigroups of continuous linear operators to Fréchet spaces. Every
operator norm continuous semigroup in a Banach space X has an infinitesimal generator belonging
to the space of continuous linear operators on X; an example is given to show that this fails
in a general Fréchet space. However, it does not fail for countable products of Banach spaces
and quotients of such products; these are the Fréchet spaces that are quojections, the projective
sequence consisting of surjections. Examples include the sequence space CN and the Fréchet space of
continuous functions C(X) with X a σ-compact completely regular topological space and compact
open topology.

Grosse-Erdmann [29] related hypercyclicity to the topological universality concept, and showed
that an operator T is hypercyclic on a separable Fréchet space F if it has the topological tran-
sitivity property: for every pair of nonempty open subsets U, V ⊆ F there is some n ∈ N such
that Tn(U)

⋂
V 6= ∅. Chen and Shaw [13] related hypercyclicity to topological mixing, following

Costakis and Sambarino [15] who showed that if Tn satisfies the Hypercyclicity Criterion then T
is topologically mixing in the sense that: for every pair of nonempty open subsets U, V ⊆ F there
is some N ∈ N such that Tn(U)

⋂
V 6= ∅ for all n ≥ N. See also Bermúdez et al. [8] for further

studies of hypercyclic and chaotic maps on Banach spaces in the context of topological mixing.

It was known that the direct sum of two hypercyclic operators need not be hypercyclic but recently
De La Rosa and Read [16] showed that even the direct sum of a hypercyclic operator with itself T⊕T
need not be hypercyclic. Bonet and Peris [12] showed that every separable infinite dimensional
Fréchet space F supports a hypercyclic operator. Moreover, from Shkarin [43], there is a linear
operator T such that the direct sum T⊕T⊕...⊕T = T⊕m of m copies of T is a hypercyclic operator
on Fm for each m ∈ N. An m-tuple (T, T, ..., T ) is called disjoint hypercyclic if there exists f ∈ F
such that (Tn1 f, T

n
2 f, ..., T

n
mf), n = 1, 2, ... is dense in Fm. See Salas [42] and Bernal-González [9]

for examples and recent results.

O’Regan and Xian [41] proved fixed point theorems for maps and multivalued maps between
Fréchet spaces, using projective limits and the classical Banach theory. Further recent work on set
valued maps between Fréchet spaces can be found in Galanis et al.[27, 28, 40] and Bakowska and
Gabor [6].

Montes-Rodriguez et al. [36] studied the Volterra composition operators Vϕ for ϕ a measurable
self-map of [0, 1] on functions f ∈ Lp[0, 1], 1 ≤ p ≤ ∞

(Vϕf)(x) =

∫ ϕ

0

(x)f(t)dt (10)

These operators generalize the classical Volterra operator V which is the case when ϕ is the identity.
Vϕ is measurable, and compact on Lp[0, 1].

Consider the Fréchet space F = C0[0, 1), of continuous functions vanishing at zero with the topology
of uniform convergence on compact subsets of [0, 1). It was known that the action of Vϕ on C0[0, 1)
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is hypercyclic when ϕ(x) = xb, b ∈ (0, 1) [31]. This result has now been extended by Montes-
Rodriguez et al. to give the following complete characterization.

Theorem 7.1. [36] For ϕ ∈ C0[0, 1) the following are equivalent
(i) ϕ is strictly increasing with ϕ(x) > x for x ∈ (0, 1) (ii) Vϕ is weakly hypercyclic (iii) Vϕ is
hypercyclic.

Karami et al [32] seem to obtain examples of hypercyclic operators on Hbc(E), the space of bounded
functions on compact subsets of Banach space E. For example, when E has separable dual E∗ then
for nonzero α ∈ E, Tα : f(x) 7→ f(x+α) is hypercyclic. As for other cases of hypercyclic operators
on Banach spaces, it would be interesting to know when the property persists to projective limits
of the domain space.

Yousefi and Ahmadian [49] studied the case that T is a continuous linear operator on an infinite
dimensional Hilbert space H and left multiplication is hypercyclic with respect to the strong op-
erator topology. Then there is a Fréchet space F containing H, F is the completion of H, and for
every nonzero vector f ∈ H the orbit {Tnf, n ≥} meets any open subbase of F.
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