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Preface

The aim of the authors is to lay down the foundations of the projective
systems of various geometrical structures modelled on Banach spaces, even-
tually leading to homologous structures in the framework of Fréchet differ-
ential geometry, by overcoming some of the inherent deficiencies of Fréchet
spaces. We elaborate this brief description in the sequel.

Banach spaces, combining a metric topology (subordinate to a norm),
and a linear space structure (for representing derivatives as linear approx-
imations to functions in order to do calculus), provide a very convenient
setting for many problems in functional analysis, which we need for han-
dling calculus on function spaces, usually infinite dimensional. They are
a relatively gentle extension from experience on finite dimensional spaces,
since many topological properties of spaces and groups of linear maps, as
well as many of the existence and uniqueness theorems for solutions of dif-
ferential equations carry over to the infinite dimensional case.

Manifolds and fibre bundles modelled on Banach spaces arise from the
synthesis of differential geometry and functional analysis, thus leading to
important examples of global analysis. Indeed, many spaces of (differen-
tiable) maps between appropriate manifolds admit the structure of Banach
manifolds (see, for instance, J. Eells [Eel66, § 6]).

On the other hand, as mentioned also in [Eel66], Riemannian manifolds,
represented as rigid maps on infinite dimensional function spaces, arise as
configuration spaces of dynamical systems, with metrics interpreted as ki-
netic energy. Much of the calculus of variations and Morse theory is con-
cerned with a function space in differential geometry—the Euler-Lagrange
operator of a variational problem is interpreted as a gradient vector field,
with integral curves the paths of steepest ascent. Some eigenvalue prob-
lems in integral and differential equations are interpretable via Lagrangian
multipliers, involving infinite dimensional function spaces from differential
geometry—such as focal point theory and geometric consequences of the
inverse function theorem in infinite dimensions.

ix
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However, in a number of situations that have significance in global anal-
ysis and physics, for example, physical field theory, Banach space repre-
sentations break down. A first step forward is achieved by weakening the
topological requirements: Instead of a norm, a family of seminorms is con-
sidered. This leads to Fréchet spaces, which do have a linear structure and
their topology is defined through a sequence of seminorms.

Although Fréchet spaces seem to be very close to Banach spaces, a num-
ber of critical deficiencies emerge in their framework. For instance, despite
the progress in particular cases, they lack a general solvability theory of
differential equations, even the linear ones; also, the space of continuous
linear morphisms between Fréchet spaces does not remain in the category,
and the space of linear isomorphisms does not admit a reasonable Lie group
structure.

The situation becomes much more complicated when we consider mani-
folds modelled on Fréchet spaces. Fundamental tools such as the exponential
map of a Fréchet-Lie group may not exist. Additional complications become
particularly noticeable when we try to collect Fréchet spaces together to form
bundles (over manifolds modelled on atlases of Fréchet spaces), in order to
develop geometrical operators like covariant derivatives and curvature to
act on sections of bundles. The structure group of such bundles, being the
general linear group of a Fréchet space, is not a Lie group—even worse, it
does not have a natural topological structure. Parallel translations do not
necessarily exist because of the inherent difficulties in solving differential
equations within this framework, and so on.

This has relevance to real problems. The space of smooth functions
C∞(I,R), where I is a compact interval of R, is a Fréchet space. The
space C∞(M,V ), of smooth sections of a vector bundle V over a compact
smooth Riemannian manifold M with covariant derivative ∇, is a Fréchet
space. The C∞ Riemannian metrics on a fixed closed finite-dimensional
orientable manifold has a Fréchet model space. Fréchet spaces of sections
arise naturally as configurations of a physical field. Then the moduli space,
consisting of inequivalent configurations of the physical field, is the quotient
of the infinite-dimensional configuration space X by the appropriate sym-
metry gauge group. Typically, X is modelled on a Fréchet space of smooth
sections of a vector bundle over a closed manifold.

Despite their apparent differences, the categories of Banach and Fréchet
spaces are connected through projective limits. Indeed, the simplest exam-
ple of this situation is the limiting real product space R

∞ = limn→∞R
n.

Taking notice of how R
∞ arises from R

n, this approach extends to arbi-
trary Fréchet spaces, since always they can be represented by a countable
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sequence of Banach spaces in a somewhat similar manner. Although careful
concentration to the above example is salutary, (bringing to mind the story
of the mathematician drafted to work on a strategic radar project some 70
years ago, who when told of the context said “but I only know Ohms Law!”
and the response came, “you only need to know Ohms Law, but you must
know it very, very well”), it should be emphasized that the mere properties
of R∞ do not answer all the questions and problems referring to the more
complicated geometrical structures mentioned above.

The approach adopted is designed to investigate, in a systematic way,
the extent to which the shortcomings of the Fréchet context can be worked
round by viewing, under sufficient conditions, geometrical objects and prop-
erties in this context as limits of sequences of their Banach counterparts,
thus exploiting the well developed geometrical tools of the latter. In this
respect, we propose, among other generalizations, the replacement of cer-
tain pathological structures and spaces such as the structural group of a
Fréchet bundle, various spaces of linear maps, frame bundles, connections
on principal and vector bundles etc., by appropriate entities, susceptible to
the limit process. This extends many classical results to our framework and,
to a certain degree, bypasses its drawbacks.

Apart from the problem of solving differential equations, much of our
work is motivated also by the need to endow infinite-dimensional Lie groups
with an exponential map [a fact characterizing–axiomatically–the category
of (infinite-dimensional) regular Lie groups]; the differential and vector bun-
dle structure of the set of infinite jets of sections of a Banach vector bundle
(compare with the differential structure described in [Tak79]); the need to
put in a wider perspective particular cases of projective limits of mani-
folds and Lie groups appearing in physics (see e.g. [AM99], [AI92], [AL94],
[Bae93]) or in various groups of diffeomorphisms (e.g. [Les67], [Omo70]).

For the convenience of the reader, we give an outline of the presentation,
referring for more details to the table of contents and the introduction to
each chapter.

Chapter 1 introduces the basic notions and results on Banach manifolds and
bundles, with special emphasis on their geometry. Since there is not a sys-
tematic treatment of the general theory of connections on Banach principal
and vector bundles (apart from numerous papers, with some very funda-
mental ones among them), occasionally we include extra details on specific
topics, according to the needs of subsequent chapters. With a few excep-
tions, there are not proofs in this chapter and the reader is guided to the
literature for details. This is to keep the notes within a reasonable size;
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however, the subsequent chapters are essentially self-contained.

Chapter 2 contains a brief account of the structure of Fréchet spaces and the
differentiability method applied therein. From various possible differentia-
bility methods we have chosen to apply that of J.A. Leslie [Les67], [Les68],
a particular case of Gâteaux differentiation which fits well to the structure
of locally convex spaces, without recourse to other topologies. Among the
main features of this chapter we mention the representation of a Fréchet
space by a projective limit of Banach spaces, and that of some particular
spaces of continuous linear maps by projective limits of Banach functional
spaces, a fact not true for arbitrary spaces of linear maps. An application
of the same representation is proposed for studying differential equations in
Fréchet spaces, including also comments on other approaches to the same
subject. Projective limit representations of various geometrical structures
constitute one of the main tools of our approach.

Chapter 3 is dealing with the smooth structure, under appropriate condi-
tions, of Fréchet manifolds arising as projective limits of Banach manifolds,
as well as with topics related to their tangent bundles. The case of Fréchet-
Lie groups represented by projective limits of Banach-Lie groups is also stud-
ied in detail, because of their fundamental role in the structure of Fréchet
principal bundles. Such groups admit an exponential map, an important
property not yet established for arbitrary Fréchet-Lie groups.

Chapter 4 is devoted to the study of projective systems of Banach principal
bundles and their connections. The latter are handled by their connection
forms, global and local ones. It is worthy of note that any Fréchet principal
bundle, with structure group one of those alluded to in Chapter 3, is al-
ways representable as a projective limit of Banach principal bundles, while
any connection on the former bundle is an appropriate projective limit of
connections in the factor bundles of the limit. Here, related (or conjugate)
connections, already treated in Chapter 1, provide an indispensable tool in
the approach to connections in the Fréchet framework. We further note that
the holonomy groups of the limit bundle do not necessarily coincide with
the projective limits of the holonomy groups of the factor bundles. This is
supported by an example after the study of flat bundles.

Chapter 5 is concerned with projective limits of Banach vector bundles. If
the fibre type of a limit bundle is the Fréchet space F, the structure of the
vector bundle is fully determined by a particular group (denoted by H0(F)
and described in § 5.1), which replaces the pathological general linear group
GL(F) of F, thus providing the limit with the structure of a Fréchet vector
bundle. The study of connections on vector bundles of the present type is
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deferred until Chapter 7.

Chapter 6 contains a collection of examples of Fréchet bundles realized as
projective limits of Banach ones. Among them, we cite in particular the
bundle J∞(E) of infinite jets of sections of a Banach vector bundle E. This
is a non trivial example of a Fréchet vector bundle, essentially motivating
the conditions required to define the structure of an arbitrary vector bundle
in the setting of Chapter 5. On the other hand, the generalized bundle of
frames of a Fréchet vector bundle is an important example of a principal
bundle with structure group the aforementioned group H0(F).

Chapter 7 aims at the study of connections on Fréchet vector bundles the
latter being in the sense of Chapter 5. The relevant notions of parallel
displacement along a curve and the holonomy group are also examined.
Both can be defined, despite the inherent difficulties of solving equations in
Fréchet spaces, by reducing the equations involved to their counterparts in
the factor Banach bundles.

Chapter 8 is mainly focused on the vector bundle structure of the second
order tangent bundle of a Banach manifold. Such a structure is always
defined once we choose a linear connection on the base manifold, thus a
natural question is to investigate the dependence of the vector bundle struc-
ture on the choice of the connection. The answer relies on the possibility
to characterize the second order differentials as vector bundle morphisms,
which is affirmative if the connections involved are properly related (conju-
gate). The remaining part of the chapter is essentially an application of our
methods to the second order Fréchet tangent bundle and the corresponding
(generalized) frame bundle.

We conclude with a series of open problems or suggestions for further appli-
cations, within the general framework of our approach to Fréchet geometry,
eventually leading to certain topics not covered here.

These notes are addressed to researchers and graduate students of mathe-
matics and physics with an interest in infinite-dimensional geometry, espe-
cially that of Banach and Fréchet manifolds and bundles. Since we have in
mind a wide audience, with possibly different backgrounds and interests, we
have paid particular attention to the details of the exposition so that it is
as far as possible self-contained. However, a familiarity with the rudiments
of the geometry of manifolds and bundles (at least of finite dimensions) is
desirable if not necessary.

It is a pleasure to acknowledge our happy collaboration, started over
ten years ago by discussing some questions of common research interest
and resulting in a number of joint papers. The writing of these notes is
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the outcome of this enjoyable activity. Finally, we are very grateful to
an extremely diligent reviewer who provided many valuable comments and
suggestions on an earlier draft, we have benefited much from this in the final
form of the monograph.

Manchester – Piraeus – Athens,
February 2015


