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Information geometry: overview 

• Application of methods from geometry to problems of 
statistics; 

• Attempts to answer the question, “how far apart are two 
distributions?” 

• e.g. Gaussian (m, s2): Euclidian distance between two 
distributions has no `natural’ statistical significance.  
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Information geometry: overview 

• Information geometry seeks first the shape of the 
(multidimensional) surface  

• Once the surface is known the shortest curve between two 
points representing the distributions is the ‘natural’ metric, 
i.e. it has statistical meaning 

• For our two Gaussians, the surface is curved. (cf. great 
circles) 
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Formation 

• There are many well-established quantitative 
measures of formation: 

• variance of local grammage at different scales 
of inspection 

• power spectrum 
• specific perimeter 

 
• Often comparative quantifiers are used, which 

compare measured properties with those of a 
random fibre network. 
 

• Direct mappings exist among all established measure 
of formation. 
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• The decay of the variance of local grammage with scale of 
inspection, x, depends on the autocorrelation function for 
pairs of points separated by a distance r, which we denote 
a*(r): 
 
 
 

• The wavelength power spectrum is given by the Fourier 
transform of a*(r). 
 

• For random networks, a(r) and s2(b) are known 
analytically. 

Formation 

        rxrbr
x

x d,
~

2

0

*22 *

 absbs



Some more about autocorrelation 

• Autocorrelation is a characteristic of the texture of our 
grammage map; 
 

• It measures the degree of association of the grammage 
of each pixel with that of pixels a given distance away: 

• Close pixels are likely to have similar grammage;  
• The grammage of ‘distant’ pixels are independent; 
• Rate of decrease is a characteristic of ‘floc size’ 

 
• Autocorrelation is given by the covariance divided by the 

variance (0 < a(r) ≤ 1).  
 

• It is a GLOBAL average property. 



Covariance 

• The covariance of a pair of random variables p and q is 
given by 
 
 

• From our array of local grammage values, 𝛽  we obtain 

the local average grammage of the first and second 

neighbours, 𝛽 1 and 𝛽 2 
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Covariance 

• So, from the distribution of local grammages, we obtain 
three approximately Gaussian distributions. 

• The random variables, 𝛽 , 𝛽 1 and 𝛽 2 are not 

independent; they have covariances: 

 Cov(𝛽 , 𝛽 1) Cov(𝛽 , 𝛽 2) Cov(𝛽 1, 𝛽 2) 

• The covariance matrix characterises the trivariate 
Gaussian distribution: 
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Information distance 

• For a pair of trivariate Gaussian distributions, A & B, 
with 

• common mean vector, m A = m B = m   

• different covariance matrices, A ≠ B 

 
the information distance is known and is given by 
 
 
 
where 
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Information distance by example 

Inputs:  
 
• Grammage, 

• Fibre properties: 

• Length,  

• Coarseness, d 

• Width, w 

• Mean floc radius, rf 

• Floc intensity, 0≤I ≤1 

• Expected number of 
fibres per cluster, 

 

b

cn

Simulation: 
 
• Number of fibres per cluster, nc, is a Poisson 

variable with mean,  

• Mean grammage, G, of each cluster is 
assumed constant (cf. Farnood et al. 1995)  

 

 

• Radius of each cluster is  

 

 

• nc fibre centres deposited within circles of 
radius r. 

• For each fibre, contribution to mass of each 
pixel calculated. 
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Information distance by example 

  
I 
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1                  
5            

10         
20            
30            

16 samples 



Information distance by example 

• From each of these 16 samples, we compute 𝛽 , 𝛽 1 and 

𝛽 2 and their covariance matrices  

 
 
 
 
 
 
 

• We then compute the mutual distances between all 
pairs of covariance matrices. 
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Dimensionality reduction by example 

• We seek to visualize our N (=16) samples on a 3D surface.  

• We employ the ‘dimensionality reduction’ or ‘multi-
dimensional scaling’ approach of Carter et al. (2009): 

1. Centralize the matrix of DS by subtracting row and 
column means and adding grand mean; 

2. Compute the N eigenvalues and N  N -dimensional 
eigenvectors of the resultant matrix; 

3. Make a 3 × 3 matrix, A, of the three largest 
eigenvalues; make a 3 x N matrix, B, of corresponding 
eigenvectors; 

4. The transpose of the product        is an N × 3 matrix 
which gives N coordinates in 3-space. 

BA 
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Dimensionality reduction by example 

0.4

0.2

0.0

0.2

0.4

1 0 1

0.0

0.5

  
I 

─ 0.010 0.020 0.035 0.050 0.075 0.100 

nc 

1                  
5          

10         
20          
30          



0.4

0.2

0.0

0.2

0.4

1 0 1

0.0

0.5

  
I 

─ 0.010 0.020 0.035 0.050 0.075 0.100 

nc 

1                  
5           

10         
20           
30           

Dimensionality reduction by example 



0.4

0.2

0.0

0.2

0.4

1 0 1

0.0

0.5

  
I 

─ 0.010 0.020 0.035 0.050 0.075 0.100 

nc 

1                  
5            

10         
20            
30            

Dimensionality reduction by example 



Effect of grammage; random  

• Simulated networks with grammage 5, 10, 15, …, 100 g m-2 

5 10 15 20 
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Effect of grammage; random  
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UofT archive 

• ‘Archive 1’ 

• Radiographs of 182 samples 

• Handsheets 

• Headbox 
• Couch trim 
• Settling experiments 
• Miscellaneous 

• Pilot machines 

• Gap formers 

• Hybrid formers 



UofT archive 
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Conclusions 

• Information geometry provides a natural metric to 
discriminate among formation textures 
 

• Discrimination among simulated textures is 
consistent with the parameters used to generate 
them 
 

• Sheets formed by different forming methods exhibit 
clustering according to forming conditions 


