Information geometry and dimensional reduction for statistical structural features of paper

C.T.J. Dodson
School of Mathematics
W.W. Sampson
School of Materials

University of Manchester

- Information geometry: the idea
- Formation
- Information geometry: formation maps
- Simulations
- Archive data
- Summary

Information geometry: overview

- Application of methods from geometry to problems of statistics;
- Attempts to answer the question, "how far apart are two distributions?"
- e.g. Gaussian $\left(\mu, \sigma^{2}\right)$: Euclidian distance between two distributions has no `natural' statistical significance.

Information geometry: overview

- Information geometry seeks first the shape of the (multidimensional) surface
- Once the surface is known the shortest curve between two points representing the distributions is the 'natural' metric, i.e. it has statistical meaning
- For our two Gaussians, the surface is curved. (cf. great circles)
σ^{2}

Formation

- There are many well-established quantitative measures of formation:
- variance of local grammage at different scales of inspection
- power spectrum
- specific perimeter
- Often comparative quantifiers are used, which compare measured properties with those of a random fibre network.
- Direct mappings exist among all established measure of formation.

Formation

Formation

- The decay of the variance of local grammage with scale of inspection, x, depends on the autocorrelation function for pairs of points separated by a distance r, which we denote $\alpha^{*}(r)$:

$$
\sigma_{x}^{2}(\widetilde{\beta})=\sigma^{* 2}(\beta) \int_{0}^{\sqrt{2 x}} \alpha^{*}(r) b(r, x) \mathrm{d} r
$$

- The wavelength power spectrum is given by the Fourier transform of $\alpha^{*}(r)$.
- For random networks, $\alpha(r)$ and $\sigma^{2}(\beta)$ are known analytically.

Some more about autocorrelation

- Autocorrelation is a characteristic of the texture of our grammage map;
- It measures the degree of association of the grammage of each pixel with that of pixels a given distance away:
- Close pixels are likely to have similar grammage;
- The grammage of 'distant' pixels are independent;
- Rate of decrease is a characteristic of 'floc size'
- Autocorrelation is given by the covariance divided by the variance ($0<\alpha(r) \leq 1)$.
- It is a GLOBAL average property.
- The covariance of a pair of random variables p and q is given by

$$
\operatorname{Cov}(p, q)=\overline{p q}-\bar{p} \bar{q}
$$

- From our array of local grammage values, $\tilde{\beta}$ we obtain the local average grammage of the first and second neighbours, $\tilde{\beta}_{1}$ and $\tilde{\beta}_{2}$

- The covariance of a pair of random variables p and q is given by

$$
\operatorname{Cov}(p, q)=\overline{p q}-\bar{p} \bar{q}
$$

- From our array of local grammage values, $\tilde{\beta}$ we obtain the local average grammage of the first and second neighbours, $\tilde{\beta}_{1}$ and $\tilde{\beta}_{2}$

- The covariance of a pair of random variables p and q is given by

$$
\operatorname{Cov}(p, q)=\overline{p q}-\bar{p} \bar{q}
$$

- From our array of local grammage values, $\tilde{\beta}$ we obtain the local average grammage of the first and second neighbours, $\tilde{\beta}_{1}$ and $\tilde{\beta}_{2}$

- The covariance of a pair of random variables p and q is given by

$$
\operatorname{Cov}(p, q)=\overline{p q}-\bar{p} \bar{q}
$$

- From our array of local grammage values, $\tilde{\beta}$ we obtain the local average grammage of the first and second neighbours, $\tilde{\beta}_{1}$ and $\tilde{\beta}_{2}$

- The covariance of a pair of random variables p and q is given by

$$
\operatorname{Cov}(p, q)=\overline{p q}-\bar{p} \bar{q}
$$

- From our array of local grammage values, $\tilde{\beta}$ we obtain the local average grammage of the first and second neighbours, $\tilde{\beta}_{1}$ and $\tilde{\beta}_{2}$

- The covariance of a pair of random variables p and q is given by

$$
\operatorname{Cov}(p, q)=\overline{p q}-\bar{p} \bar{q}
$$

- From our array of local grammage values, $\tilde{\beta}$ we obtain the local average grammage of the first and second neighbours, $\tilde{\beta}_{1}$ and $\tilde{\beta}_{2}$

- The covariance of a pair of random variables p and q is given by

$$
\operatorname{Cov}(p, q)=\overline{p q}-\bar{p} \bar{q}
$$

- From our array of local grammage values, $\tilde{\beta}$ we obtain the local average grammage of the first and second neighbours, $\tilde{\beta}_{1}$ and $\tilde{\beta}_{2}$

- The covariance of a pair of random variables p and q is given by

$$
\operatorname{Cov}(p, q)=\overline{p q}-\bar{p} \bar{q}
$$

- From our array of local grammage values, $\tilde{\beta}$ we obtain the local average grammage of the first and second neighbours, $\tilde{\beta}_{1}$ and $\tilde{\beta}_{2}$

- The covariance of a pair of random variables p and q is given by

$$
\operatorname{Cov}(p, q)=\overline{p q}-\bar{p} \bar{q}
$$

- From our array of local grammage values, $\tilde{\beta}$ we obtain the local average grammage of the first and second neighbours, $\tilde{\beta}_{1}$ and $\tilde{\beta}_{2}$

- The covariance of a pair of random variables p and q is given by

$$
\operatorname{Cov}(p, q)=\overline{p q}-\bar{p} \bar{q}
$$

- From our array of local grammage values, $\tilde{\beta}$ we obtain the local average grammage of the first and second neighbours, $\tilde{\beta}_{1}$ and $\tilde{\beta}_{2}$

- The covariance of a pair of random variables p and q is given by

$$
\operatorname{Cov}(p, q)=\overline{p q}-\bar{p} \bar{q}
$$

- From our array of local grammage values, $\tilde{\beta}$ we obtain the local average grammage of the first and second neighbours, $\tilde{\beta}_{1}$ and $\tilde{\beta}_{2}$

- The covariance of a pair of random variables p and q is given by

$$
\operatorname{Cov}(p, q)=\overline{p q}-\bar{p} \bar{q}
$$

- From our array of local grammage values, $\tilde{\beta}$ we obtain the local average grammage of the first and second neighbours, $\tilde{\beta}_{1}$ and $\tilde{\beta}_{2}$

Covariance

Covariance

- So, from the distribution of local grammages, we obtain three approximately Gaussian distributions.
- The random variables, $\tilde{\beta}, \tilde{\beta}_{1}$ and $\tilde{\beta}_{2}$ are not independent; they have covariances:

$$
\operatorname{Cov}\left(\tilde{\beta}, \tilde{\beta}_{1}\right) \quad \operatorname{Cov}\left(\tilde{\beta}, \tilde{\beta}_{2}\right) \quad \operatorname{Cov}\left(\tilde{\beta}_{1}, \tilde{\beta}_{2}\right)
$$

- The covariance matrix characterises the trivariate Gaussian distribution:

$$
\Sigma=\left(\begin{array}{ccc}
\sigma^{2}(\widetilde{\beta}) & \operatorname{Cov}\left(\widetilde{\beta}, \widetilde{\beta}_{1}\right) & \operatorname{Cov}\left(\widetilde{\beta}_{1}, \widetilde{\beta}_{2}\right) \\
\operatorname{Cov}\left(\widetilde{\beta}, \widetilde{\beta}_{1}\right) & \sigma^{2}\left(\widetilde{\beta}_{1}\right) & \operatorname{Cov}\left(\widetilde{\beta}_{1}, \widetilde{\beta}_{2}\right) \\
\operatorname{Cov}\left(\widetilde{\beta}, \widetilde{\beta}_{2}\right) & \operatorname{Cov}\left(\widetilde{\beta}_{1}, \widetilde{\beta}_{2}\right) & \sigma^{2}\left(\widetilde{\beta}_{2}\right)
\end{array}\right)
$$

Information distance

- For a pair of trivariate Gaussian distributions, A \& B, with
- common mean vector, $\mu_{\mathrm{A}}=\mu_{\mathrm{B}}=\mu$
- different covariance matrices, $\Sigma^{\mathrm{A}} \neq \Sigma^{\mathrm{B}}$
the information distance is known and is given by

$$
D_{\Sigma}\left(f^{\mathrm{A}}, f^{\mathrm{B}}\right)=\sqrt{\frac{1}{2} \sum_{j=1}^{3} \log ^{2}\left(\lambda_{j}\right)}
$$

where

$$
\left\{\lambda_{j}\right\}=\operatorname{Eig}\left(\Sigma^{A^{-1 / 2}} \cdot \Sigma^{B} \cdot \Sigma^{A^{-1 / 2}}\right)
$$

Information distance by example

Inputs:

- Grammage, $\bar{\beta}$
- Fibre properties:
- Length, λ
- Coarseness, δ
- Width, ω
- Mean floc radius, r_{f}
- Floc intensity, $0 \leq I \leq 1$
- Expected number of fibres per cluster, $\overline{n_{c}}$

Simulation:

- Number of fibres per cluster, n_{a} is a Poisson variable with mean, $\overline{n_{c}}$
- Mean grammage, G, of each cluster is assumed constant (cf. Farnood et al. 1995)

$$
G=I \beta_{\mathrm{fib}}=\frac{I \delta}{\omega}
$$

- Radius of each cluster is

$$
r=\sqrt{\frac{n_{c} \lambda \omega}{\pi I}}
$$

- n_{c} fibre centres deposited within circles of radius r.
- For each fibre, contribution to mass of each pixel calculated.

Information distance by example

Information distance by example

16 samples

			-	0.010	0.020	0.035	0.050	0.075
n_{c}	0.100							
	1	\checkmark						
	5		\checkmark			\checkmark		\checkmark
	10		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	20		\checkmark			\checkmark		\checkmark
	30		\checkmark			\checkmark		\checkmark

Information distance by example

- From each of these 16 samples, we compute $\tilde{\beta}, \tilde{\beta}_{1}$ and $\tilde{\beta}_{2}$ and their covariance matrices

$$
\left\{\left(\begin{array}{lll}
7.1 & 0.5 & 0.0 \\
0.5 & 1.1 & 0.1 \\
0.0 & 0.1 & 0.5
\end{array}\right),\left(\begin{array}{lll}
11 & 3.3 & 1.4 \\
3.3 & 3.4 & 1.4 \\
1.4 & 1.4 & 1.7
\end{array}\right), \ldots,\left(\begin{array}{ccc}
50 & 27 & 7.9 \\
27 & 21 & 9.2 \\
7.9 & 9.2 & 9.0
\end{array}\right)\right\}
$$

- We then compute the mutual distances between all pairs of covariance matrices.

Information distance by example

$\left(\begin{array}{cccccccccccccccc}0 . & 1.1 & 1.4 & 1.6 & 1.5 & 1.6 & 2.1 & 2.2 & 2.5 & 1.9 & 2.4 & 2.5 & 2.8 & 1.6 & 2 . & 2.2 \\ 1.1 & 0 . & 0.3 & 0.6 & 0.5 & 0.8 & 1.1 & 1.2 & 1.4 & 1.1 & 1.5 & 1.5 & 1.8 & 0.5 & 1 . & 1.3 \\ 1.4 & 0.3 & 0 . & 0.3 & 0.2 & 0.8 & 1 . & 1.1 & 1.2 & 1.1 & 1.4 & 1.4 & 1.6 & 0.4 & 0.8 & 1.2 \\ 1.6 & 0.6 & 0.3 & 0 . & 0.2 & 0.9 & 1 . & 1 . & 1.1 & 1.1 & 1.4 & 1.4 & 1.5 & 0.4 & 0.8 & 1.2 \\ 1.5 & 0.5 & 0.2 & 0.2 & 0 . & 0.9 & 1.1 & 1.1 & 1.2 & 1.1 & 1.5 & 1.5 & 1.7 & 0.5 & 0.9 & 1.3 \\ 1.6 & 0.8 & 0.8 & 0.9 & 0.9 & 0 . & 0.6 & 0.8 & 1.1 & 0.4 & 0.8 & 0.9 & 1.3 & 0.6 & 0.6 & 0.6 \\ 2.1 & 1.1 & 1 . & 1 . & 1.1 & 0.6 & 0 . & 0.3 & 0.6 & 0.6 & 0.5 & 0.4 & 0.7 & 0.6 & 0.2 & 0.2 \\ 2.2 & 1.2 & 1.1 & 1 . & 1.1 & 0.8 & 0.3 & 0 . & 0.4 & 0.8 & 0.6 & 0.5 & 0.6 & 0.7 & 0.3 & 0.4 \\ 2.5 & 1.4 & 1.2 & 1.1 & 1.2 & 1.1 & 0.6 & 0.4 & 0 . & 1 . & 0.8 & 0.7 & 0.5 & 0.9 & 0.6 & 0.7 \\ 1.9 & 1.1 & 1.1 & 1.1 & 1.1 & 0.4 & 0.6 & 0.8 & 1 . & 0 . & 0.5 & 0.7 & 1.1 & 0.8 & 0.7 & 0.5 \\ 2.4 & 1.5 & 1.4 & 1.4 & 1.5 & 0.8 & 0.5 & 0.6 & 0.8 & 0.5 & 0 . & 0.3 & 0.7 & 1.1 & 0.7 & 0.3 \\ 2.5 & 1.5 & 1.4 & 1.4 & 1.5 & 0.9 & 0.4 & 0.5 & 0.7 & 0.7 & 0.3 & 0 . & 0.5 & 1.1 & 0.6 & 0.3 \\ 2.8 & 1.8 & 1.6 & 1.5 & 1.7 & 1.3 & 0.7 & 0.6 & 0.5 & 1.1 & 0.7 & 0.5 & 0 . & 1.3 & 0.8 & 0.7 \\ 1.6 & 0.5 & 0.4 & 0.4 & 0.5 & 0.6 & 0.6 & 0.7 & 0.9 & 0.8 & 1.1 & 1.1 & 1.3 & 0 . & 0.4 & 0.8 \\ 2 . & 1 . & 0.8 & 0.8 & 0.9 & 0.6 & 0.2 & 0.3 & 0.6 & 0.7 & 0.7 & 0.6 & 0.8 & 0.4 & 0 . & 0.4 \\ 2.2 & 1.3 & 1.2 & 1.2 & 1.3 & 0.6 & 0.2 & 0.4 & 0.7 & 0.5 & 0.3 & 0.3 & 0.7 & 0.8 & 0.4 & 0 .\end{array}\right)$

Information distance by example

Dimensionality reduction by example

- We seek to visualize our $N(=16)$ samples on a 3D surface.
- We employ the 'dimensionality reduction' or 'multidimensional scaling' approach of Carter et al. (2009):

1. Centralize the matrix of DS by subtracting row and column means and adding grand mean;
2. Compute the N eigenvalues and $N \times N$-dimensional eigenvectors of the resultant matrix;
3. Make a 3×3 matrix, A, of the three largest eigenvalues; make a $3 \times N$ matrix, B, of corresponding eigenvectors;
4. The transpose of the product $A \cdot B$ is an $N \times 3$ matrix which gives N coordinates in 3 -space.

Dimensionality reduction by example

		,						
		-	0.010	0.020	0.035	0.050	0.075	0.100
n_{c}	1	\checkmark						
	5		\checkmark			\checkmark		\checkmark
	10		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	20		\checkmark			\checkmark		\checkmark
	30		\checkmark			\checkmark		\checkmark

Dimensionality reduction by example

Effect of grammage; random

- Simulated networks with grammage $5,10,15, \ldots, 100 \mathrm{~g} \mathrm{~m}^{-2}$

20

Effect of grammage; random

Effect of grammage; random

UofT archive

- 'Archive 1'
- Radiographs of 182 samples
- Handsheets
- Headbox
- Couch trim
- Settling experiments
- Miscellaneous
- Pilot machines
- Gap formers
- Hybrid formers

Paper Stochastic Structure Analysis Archive 1

C.T.J. Dodson and W.K. Ng

UofT archive

UofT archive

UofT archive

Fourclifinjer

UofT archive

Fourchrinjer

Gap

UofT archive

Fourdrinijer

Gap

Hybrid

UofT archive

Fousclijnier
Gap
Hybrid

UofT archive

Fousclijnier
Gap
Hybrid

UofT archive

Fourdrinijer
Gap
Hybrid

Conclusions

- Information geometry provides a natural metric to discriminate among formation textures
- Discrimination among simulated textures is consistent with the parameters used to generate them
- Sheets formed by different forming methods exhibit clustering according to forming conditions

