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Information geometry: overview

 Application of methods from geometry to problems of
statistics;

« Attempts to answer the question, “how far apart are two
distributions?”

« e.g. Gaussian (x, o2): Euclidian distance between two
distributions has no " natural’ statistical significance.
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Information geometry: overview

« Information geometry seeks first the shape of the
(multidimensional) surface

« Once the surface is known the shortest curve between two
points representing the distributions is the ‘natural” metric,
/.e. it has statistical meaning

« For our two Gaussians, the surface is curved. (cf. great

circles)
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Formation

e There are many well-established quantitative
measures of formation:

e variance of local grammage at different scales
of inspection

e power spectrum

e specific perimeter

e Often comparative quantifiers are used, which
compare measured properties with those of a
random fibre network.

e Direct mappings exist among all established measure
of formation.



Formation
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Formation

« The decay of the variance of local grammage with scale of
inspection, x, depends on the autocorrelation function for
pairs of points separated by a distance r, which we denote

0(*(/‘): V2x
()= o"(B) [ (r)blr, x)dr

« The wavelength power spectrum is given by the Fourier
transform of o' (/).

« For random networks, o) and o2(8) are known
analytically.



Some more about autocorrelation

« Autocorrelation is a characteristic of the texture of our
grammage map;

It measures the degree of association of the grammage
of each pixel with that of pixels a given distance away:

 Close pixels are likely to have similar grammage;
« The grammage of ‘distant’ pixels are independent;
« Rate of decrease is a characteristic of ‘floc size’

 Autocorrelation is given by the covariance divided by the
variance (0 < a(/) £ 1).

« It is a GLOBAL average property.



Covariance

« The covariance of a pair of random variables pand gis
given by

Cov(p,q)=pg-pPq
« From our array of local grammage values, 8 we obtain

the local average grammage of the first and second
neighbours, 5, and £,
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Covariance
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Covariance

« So, from the distribution of local grammages, we obtain
three approximately Gaussian distributions.

 The random variables, 8, 3, and 3, are not
independent; they have covariances:

COV(E! lgl) COV(BI EZ) COV(Bll BZ)

 The covariance matrix characterises the trivariate
Gaussian distribution:

( aZ(N) Cov N,ﬁl) Cov(, 5, )
s=lcov(z, ) <B) covlf,
\COVﬁ, Nz Cov NlINZ) O-z(ﬁZ) Y,




Information distance

« For a pair of trivariate Gaussian distributions, A & B,
with
« common mean vector, y, = ug = u
« different covariance matrices, XA # >B

the information distance is known and is given by

DZ(fA,fB):\/;jZB;Iogz(ﬂj)

where
(1,)= Eig(z“ 3 -z“)



Information distance by example

Inputs:

e Grammage, S
e Fibre properties:
e Length, 4
e Coarseness, o
o Width, w
e Mean floc radius, r;
e Floc intensity, 0<7/<1

 Expected number of
fibres per cluster, n.

Simulation:

e Number of fibres per cluster, n,, is a Poisson
variable with mean, ”_c

e Mean grammage, G, of each cluster is
assumed constant (¢ Farnood et al. 1995)

o)
G:Iﬂﬁb:;

e Radius of each cluster is

1

* 1 fibre centres deposited within circles of
radius r.

e For each fibre, contribution to mass of each
pixel calculated.



Information distance by example




Information distance by example

16 samples
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Information distance by example

» From each of these 16 samples, we compute £, 5; and
B, and their covariance matrices

(7.1 05 0.0)(11 3.3 1.4) (50 27 7.9)
1105 1.1 01|33 34 14..,[27 21 9.2|
(00 0.1 05)(1.4 14 1.7) (7.9 92 9.0)

« We then compute the mutual distances between all
pairs of covariance matrices.



Information distance by example

(0. 11 14 16 15 16 21 22 25 19 24 25 28 16 2. 22)
11 0. 03 06 05 08 11 12 14 11 15 15 18 05 1. 13
14 03 0. 03 02 08 1. 11 12 11 14 14 16 04 08 1.2
16 06 03 0. 02 09 1. 1. 11 11 14 14 15 04 08 1.2
15 05 02 02 0. 09 11 11 12 11 15 15 17 05 09 13
16 08 08 09 09 0. 06 08 11 04 08 09 13 06 06 06
21 11 1. 1. 11 06 0. 03 06 06 05 04 07 06 02 02
22 12 11 1. 11 08 03 0. 04 08 06 05 06 0.7 03 04
25 14 12 11 12 11 06 04 0. 1. 08 0.7 05 09 06 0.7
19 11 11 11 11 04 06 08 1. 0. 05 0.7 11 08 0.7 05
24 15 14 14 15 08 05 06 08 05 0. 03 07 11 0.7 03
25 15 14 14 15 09 04 05 07 07 03 0. 05 11 06 03
28 18 16 15 17 13 07 06 05 11 07 05 0. 13 08 0.7
16 05 04 04 05 06 06 07 09 08 11 11 13 0. 04 08
2. 1. 08 08 09 06 02 03 06 0.7 07 06 08 04 0. 04

\22 13 12 12 13 06 02 04 07 05 03 03 0.7 08 04 0. )




Information distance by example




Dimensionality reduction by example

« We seek to visualize our NV (=16) samples on a 3D surface.

« We employ the ‘dimensionality reduction’ or ‘multi-
dimensional scaling” approach of Carter et a/. (2009):

1. Centralize the matrix of DS by subtracting row and
column means and adding grand mean;

2. Compute the NV eigenvalues and NV x N -dimensional
eigenvectors of the resultant matrix;

3. Make a 3 x 3 matrix, A4, of the three largest
eigenvalues; make a 3 x N matrix, B, of corresponding
eigenvectors;

4. The transpose of the product 4-8 is an NV X 3 matrix
which gives N coordinates in 3-space.



Dimensionality reduction by example
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Dimensionality reduction by example
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Dimensionality reduction by example
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Dimensionality reduction by example
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Effect of grammage; random

« Simulated networks with grammage 5, 10, 15, ..., 100 g m2




Effect of grammage; random
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Effect of grammage; random




Uof T archive

e ‘Archive 1’

 Radiographs of 182 samples
Paper Stochastic Structure Analysis

« Handsheets

« Headbox

e Couch trim

« Settling experiments
« Miscellaneous

* Pilot machines

C.T.J. Dodson and W.K. Ng
Pulp & Paper Centre

Unwversily of Toronto
Copyright © 1994

« Gap formers

« Hybrid formers
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Conclusions

« Information geometry provides a natural metric to
discriminate among formation textures

 Discrimination among simulated textures is
consistent with the parameters used to generate
them

« Sheets formed by different forming methods exhibit
clustering according to forming conditions



