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Abstract

Stochastic textures yield images representing density variations
of differing degrees of spatial disorder, ranging from mixtures of
Poisson point processes to macrostructures of distributed finite ob-
jects. They arise in areas such as signal processing, molecular bi-
ology, cosmology, agricultural spatial distributions, oceanography,
meteorology, tomography, radiography and medicine. The new
contribution here is to couple information geometry with multidi-
mensional scaling, also called dimensionality reduction, to identify
small numbers of prominent features concerning density fluctua-
tion and clustering in stochastic texture images, for classification
of groupings in large datasets. Familiar examples of materials
with such textures in one dimension are cotton yarns, audio noise
and genomes, and in two dimensions paper and nonwoven fibre
networks for which radiographic images are used to assess local
variability and intensity of fibre clustering. Information geometry
of trivariate Gaussian spatial distributions of mean pixel density
with the mean densities of its first and second neighbours illus-
trate features related to sizes and density of clusters in stochastic
texture images. We derive also analytic results for the case of
stochastic textures arising from Poisson processes of line segments
on a line and rectangles in a plane. Comparing human and yeast
genomes, we use 12-variate spatial covariances to capture possible
differences relating to secondary structure. For each of our types
of stochastic textures: analytic, simulated, and experimental, we
obtain dimensionality reduction and hence 3D embeddings of sets
of samples to illustrate the various features that are revealed, such
as mean density, size and shape of distributed objects, and clus-
tering effects.
Keywords: Dimensionality reduction, stochastic texture,
density array, clustering, spatial covariance, trivariate Gaus-
sian, radiographic images, genome, simulations, Poisson
process
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Saccharomyces CerevisiaeAmino Acids SC1

Figure 1: Example of a 1-dimensional stochastic texture, a grey level
barcode for the amino acid sequence in a sample of the Saccharomyces
Cerevisiae yeast genome from the database [19].

1 Introduction

The new contribution in this paper is to couple information geome-
try with dimensionality reduction, to identify small numbers of promi-
nent features concerning density fluctuation and clustering in stochastic
texture images, for classification of groupings in large datasets. Our
methodology applies to any stochastic texture images, in one, two or
three dimensions, but to gain an impression of the nature of examples
we analyse some familiar materials for which we have areal density ar-
rays, and derive analytic expressions of spatial covariance matrices for
Poisson processes of finite objects in one and two dimensions. Infor-
mation geometry provides a natural distance structure on the textures
via their spatial covariances, which allows us to obtain multidimensional
scaling or dimensionality reduction and hence 3D embeddings of sets of
samples. See Mardia et al. [14] for an account of the original work on
multidimensional scaling.

The simplest one-dimensional stochastic texture arises as the density
variation along a cotton yarn, consisting of a near-Poisson process of
finite length cotton fibres on a line, another is an audio noise drone con-
sisting of a Poisson process of superposed finite length notes or chords. A
fundamental microscopic 1-dimensional stochastic process is the distri-
bution of the 20 amino acids along protein chains in a genome [1, 3].
Figure 1 shows a sample of such a sequence of the 20 amino acids
A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y mapped onto the 20 grey
level values 0.025, 0.075, . . . , 0.975 from the database [19], so yielding a
grey-level barcode as a 1-dimensional texture. We analyse such textures
in §6.5.

The largest 3-dimensional stochastic structure is the cosmological void
distribution, which is observable via radio astronomy [1]. More familiar
three-dimensional stochastic porous materials include metallic (Figure 2)
and plastic solid foams, geological strata and dispersions in gels, observ-
able via computer tomography [1]. Near-planar, non-woven stochastic
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Figure 2: Aluminium foam with a narrow Gaussian-like distribution
of void sizes of around 1cm diameter partially wrapped in fragmented
metallic shells, used as crushable buffers inside vehicle bodies. The cos-
mological void distribution is by contrast gamma-like with a long tail [8],
interspersed with 60% of galaxies in large-scale sheets, 20% in rich fil-
aments and 20% in sparse filaments [12]. Such 3D stochastic porous
materials can both be studied by tomographic methods, albeit at differ-
ent scales by different technologies, yielding sequences of 2D stochastic
texture images.

fibre networks are manufactured for a variety of applications such as,
at the macroscale for printing, textiles, reinforcing, and filtration and
at the nanoscale in medicine. Figure 3 shows a selection of electron
micrographs for networks at different scales. Radiography or optical
densitometry yield areal density images of the kinds shown in Figure 4.

Much analytic work has been done on modelling of the statistical ge-
ometry of stochastic fibrous networks [7, 1, 6, 17]. Using complete sam-
pling by square cells, their areal density distribution is typically well
represented by a log-gamma or a (truncated) Gaussian distribution of
variance that decreases monotonically with increasing cell size; the rate
of decay is dependent on fibre and fibre cluster dimensions. They have
gamma void size distributions with a long tail. Clustering of fibres is
well-approximated by Poisson processes of Poisson clusters of differing
density and size. An unclustered Poisson process of single fibres is the
standard reference structure for any given size distribution of fibres; its
statistical geometry is well-understood for finite and infinite fibres. Note
that any skewness associated with the underlying point process of fibre
centres becomes negligible through the process of sampling by square
cells [18].

Many stochastic textures arise from spatial processes that may be ap-
proximated by mixtures of Poisson or other distributions of finite objects
or clusters of objects, in an analogous way to that which has been used
for the past fifty years for the study of fibre networks. The Central
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Figure 3: Electron micrographs of four stochastic fibrous materials. Top
left: Nonwoven carbon fibre mat; Top right: glass fibre filter; Bottom
left: electrospun nylon nanofibrous network (Courtesy S.J. Eichhorn and
D.J. Scurr); Bottom right: paper using wood cellulose fibres—typically
flat ribbonlike, of length 1 to 2mm and width 0.02 to 0.03mm.

Figure 4: Areal density radiographs of three paper networks made from
natural wood cellulose fibres, with constant mean coverage, c̄ ≈ 20 fibres,
but different distributions of fibres. Each image represents a square re-
gion of side length 5 cm; darker regions correspond to higher coverage.
The left image is similar to that expected for a Poisson process of the
same fibres, so typical real samples exhibit clustering of fibres.
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Limit Theorem suggests that often such spatial processes may be repre-
sented by Gaussian pixel density distributions, with variance decreasing
as pixel size increases, the gradient of this decrease reflecting the size
distributions and abundances of the distributed objects and clusters,
hence indicating the appropriate pixel size to choose for feature extrac-
tion. Once a pixel size has been chosen then we are interested in the
statistics of the the three random variables: the mean density in such
pixels, and the mean densities of its first and second neighbouring pixels.
The correlations among these three random variables reflect the size and
distribution of density clusters; this may be extended to more random
variables by using also third, fourth, etc neighbours. In some cases, of
course, other pixel density distributions may be more appropriate, such
as mixtures of Gaussians.

2 Spatial covariance

The mean of a random value p is its average value, p̄, over the popula-
tion. The covariance Cov(p, q) of a pair of random variables, p and q
is a measure of the degree of association between them, the difference
between their mean product and the product of their means:

Cov(p, q) = p q − p̄ q̄ . (1)

In particular, the covariance of a variable with itself is its variance.
From the array of local average pixel density values β̃i, we generate
two numbers associated with each: the average density of the 6 first-
neighbour pixels, β̃1,i and the average density of the 16 second-neighbour
pixels, β̃2,i. Thus, we have a trivariate distribution of the random vari-
ables (β̃i, β̃1,i, β̃2,i) with β̄2 = β̄1 = β̄.

Figure 5 provides an example of a typical data set obtained from a
radiograph of a 5cm square commercial newsprint sample; the histogram
and three-dimensional scatter plot show data obtained for pixels of side
1mm.

From the Central Limit Theorem, we expect the marginal distributions
of β̃i, β̃1,i and β̃2,i to be well approximated by Gaussian distributions.
For the example in Figure 5, these Gaussians are represented by the
solid lines on the histogram; this Gaussian approximation holds for all
samples investigated in this study.

We have a simulator for creating stochastic fibre networks [10]. The
code works by dropping clusters of fibres within a circular region where
the centre of each cluster is distributed as a point Poisson process in the
plane and the number of fibres per cluster, nc, is a Poisson distributed
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Figure 5: Trivariate distribution of pixel density values for radiograph
of a 5cm square newsprint sample. Left: source density map; centre:
histogram of β̃i, β̃1,i and β̃2,i; right: 3D scatter plot of β̃i, β̃1,i and β̃2,i.

Figure 6: Simulated areal density maps each representing a 4cm × 4cm
region formed from fibres with length λ = 1 mm, to a mean coverage of
6 fibres.
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random variable. The size of each cluster is determined by an intensity
parameter, 0 < I ≤ 1 such that the mean mass per unit area of the
cluster is constant and less than the areal density of a fibre. Denoting
the length and width of a fibre by λ and ω respectively, the radius of a
cluster containing nc fibre centres is

r =

√
nc λω

π I
. (2)

Figure 6 shows examples of density maps generated by the simulator.
We observe textures that increase in ‘cloudyness’ with nc and increase
in ‘graininess’ with I.

3 Analytic covariance for spatial Poisson pro-
cesses of finite objects

Consider a Poisson process in the plane for finite rectangles of length λ
and width ω ≤ λ, with uniform orientation of rectangle axes to a fixed
direction. The covariance or autocorrelation function for such objects is
known and given by [7]:
For 0 < r ≤ ω

α1(r) = 1− 2

π

(
r

λ
+
r

ω
− r2

2ωλ

)
. (3)

For ω < r ≤ λ

α2(r) =
2

π

(
arcsin

(ω
r

)
− ω

2λ
− r

ω
+

√
r2

ω2
− 1

)
. (4)

For λ < r ≤
√

(λ2 + ω2)

α3(r) =
2

π

(
arcsin

(ω
r

)
− arccos

(
λ

r

)
− ω

2λ
− λ

2ω
− r2

2λω
+√

r2

λ2
− 1 +

√
r2

ω2
− 1

)
. (5)

Then, the coverage c at a point is the number of rectangles overlapping
that point, a Poisson variable with grand mean value c̄, and the average
coverage or density in finite pixels c̃ tends to a Gaussian random variable.
For sampling of the process using, say square inspection pixels of side
length x, the variance of their density c̃(x) is

V ar(c̃(x)) = V ar(c(0))

∫ √2x

0
α(r, ω, λ) b(r) dr (6)
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b(r, 1)

r

Figure 7: Probability density function b(r, 1) from equations (7),(8) for
the distance r between two points chosen independently and at random
in a unit square.

where b is the probability density function for the distance r between
two points chosen independently and at random in the given type of
pixel; it was derived by Ghosh [13].
Using square pixels of side length x, for 0 ≤ r ≤ x

b(r, x) =
4r

x4

(
πx2

2
− 2rx+

r2

2

)
. (7)

For x ≤ r ≤
√

2x

b(r, x) =
4r

x4

(
x2
(

arcsin
(x
r

)
− arccos

(x
r

)))
+

4r

x4

(
2x
√

(r2 − x2)− 1

2
(r2 + 2x2)

)
. (8)

A plot of this function is given in Figure 7. Observe that, for vanishingly
small pixels, that is points, b degenerates into a delta function on r = 0.
Ghosh [13] gave also the form of b for other types of pixels; for arbitrary
rectangular pixels those expressions can be found in [7]. For small values
of r, so r � D, the formulae for convex pixels of area A and perimeter
P all reduce to

b(r,A, P ) =
2πr

A
− 2Pr2

A2

which would be appropriate to use when the rectangle dimensions ω, λ
are small compared with the dimensions of the pixel.
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It helps to visualize practical variance computations by considering the
case of sampling using large square pixels of side mx say, which them-
selves consist of exactly m2 small square pixels of side x. The variance
V ar(c̃(mx)) is related to V ar(c̃(x)) through the covariance Cov(x,mx)
of x-pixels in mx-pixels [7]:

V ar(c̃(mx)) =
1

m2
V ar(c̃(x)) +

m2 − 1

m2
Cov(x,mx).

As m → ∞, the small pixels tend towards points, 1
m2V ar(c̃(x)) → 0 so

V ar(c̃(mx)) admits interpretation as Cov(0,mx), the covariance among
points inside mx-pixels, the intra-pixel covariance, precisely V ar(c̃(mx))
from equation (6).

The fractional between pixel variance for x-pixels is

ρ̃(x) =
Cov(0, x)

V ar(c(0))
=
V ar(c̃(x))

V ar(c(0))

which increases monotonically with λ and with ω but decreases mono-
tonically with mx, see Deng and Dodson [6] for more details. In fact,
for a Poisson process of rectangles the variance of coverage at points is
precisely the mean coverage, V ar(c(0)) = c̄, so if we agree to measure
coverage as a fraction of the mean coverage then equation (6) reduces
to the integral

V ar(c̃(x))

c̄
=

∫ √2x

0
α(r, ω, λ) b(r) dr = ρ̃(x). (9)

Now, the covariance among points inside mx-pixels, Cov(0,mx), is the
expectation of the covariance between pairs of points separated by dis-
tance r, taken over the possible values for r in an mx-pixel; that amounts
to the integral in equation (6). By this means we have continuous fam-
ilies of 2 × 2 covariance matrices for x ∈ R+ and 2 < m ∈ Z+ given
by

Σx,m =

(
σ11 σ12

σ12 σ22

)
=

(
V ar(c̃(x)) Cov(x,mx)
Cov(x,mx) V ar(c̃(x))

)
=

(
ρ̃(x) ρ̃(mx)
ρ̃(mx) ρ̃(x)

)
. (10)

which encodes information about the spatial structure formed from the
Poisson process of rectangles, for each choice of rectangle dimensions
ω ≤ λ ∈ R+. This can be extended to include mixtures of different
rectangles with given relative abundances and processes of more complex
objects such as Poisson clusters of rectangles.
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There is a one dimensional version of the above that is discussed in [7, 6],
with point autocorrelation calculated easily as

α(r) =

{
1− r

λ 0 ≤ r ≤ λ
0 λ < r.

(11)

Also, the probability density function for points chosen independently
and at random with separation r in a pixel, which is here an interval of
length x, is

b(r) =
2

x
(1− r

x
) (0 ≤ r ≤ x). (12)

Then the integral (6) gives the fractional between pixel variance as

ρ̃(x, λ) =

{
1− x

3λ 0 ≤ x ≤ λ
λ
x (1− λ

3x) λ < x.
(13)

So in the case of a one dimensional stochastic texture from a Poisson
process of segments of length λ we have the explicit expression for the
covariance matrices in equation (10):

Σx,m(λ) =

(
ρ̃(x, λ) ρ̃(mx, λ)
ρ̃(mx, λ) ρ̃(x, λ)

)
. (14)

In particular, if we take unit length intervals as the base pixels, for the
Poisson process of unit length line segments, x = λ = 1 we obtain

Σ1,m(1) =

(
(1− 1

3) 1
m(1− 1

3m)
1
m(1− 1

3m) (1− 1
3)

)
for m = 2, 3, . . . . (15)

4 Information distance

Given the family of pixel density distributions, with associated spatial
covariance structure among neighbours, we can use the Fisher metric [1]
to yield an arc length function on the curved space of parameters which
represent mean and covariance matrices. Then the information distance
between any two such distributions is given by the length of the shortest
curve between them, a geodesic, in this space. The computational diffi-
culty is in finding the length of this shortest curve since it is the infimum
over all curves between the given two points. Fortunately, in the cases
we need, multivariate Gaussians, this problem has been largely solved
analytically by Atkinson and Mitchell [2].

Accordingly, some of our illustrative examples use information geometry
of trivariate Gaussian spatial distributions of pixel density with covari-
ances among first and second neighbours to reveal features related to
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sizes and density of clusters, which could arise in one, two or three di-
mensions. For isotropic spatial processes, which we consider here, the
variables are means over shells of first and second neighbours, respec-
tively. For anisotropic networks the neighbour sets would be split into
more new variables to pick up the spatial anisotropy in the available
spatial directions.

Other illustrations will use the analytic bivariate covariances given in
the previous section §3 by equation (10).

What we know analytically is the geodesic distance between two mul-
tivariate Gaussians, A,B, of the same number n of variables in two
particular cases [2]:

1. µA 6= µB,ΣA = ΣB = Σ : fA = (n, µA,Σ), fB = (n, µB,Σ)

Dµ(fA, fB) =

√
(µA − µB)T · Σ−1 · (µA − µB). (16)

2. µA = µB = µ,ΣA 6= ΣB : fA = (n, µ,ΣA), fB = (n, µ,ΣB)

DΣ(fA, fB) =

√√√√1

2

n∑
j=1

log2(λj), (17)

with {λj} = Eig(ΣA−1/2 · ΣB · ΣA−1/2
).

In the present paper we use equations (16) and (17) and take the simplest
choice of a linear combination of both when mean and covariance are
both different.

However, from the form of DΣ(fA, fB) in (17) we deduce that an ap-
proximate monotonic relationship arises with a more easily computed
symmetrized log-trace function given by
∆Σ(fA, fB) =√

log

(
1

2n

(
Tr(ΣA−1/2 · ΣB · ΣA−1/2

) + Tr(ΣB−1/2 · ΣA · ΣB−1/2
))
.

(18)
This is illustrated by the plot in Figure 8 of DΣ(fA, fB) from equa-
tion (17) on ∆Σ(fA, fB) from equation (18) for 185 trivariate Gaussian
covariance matrices, where we see that

DΣ(fA, fB) ≈ 1.7∆Σ(fA, fB).

A commonly used approximation for information distance is obtained
from the Kullback-Leibler divergence, or relative entropy. Between two
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Figure 8: Plot of DΣ(fA, fB) from (17) against ∆Σ(fA, fB) from (18)
for 185 different trivariate Gaussian covariance matrices.

multivariate Gaussians fA = (n, µA,ΣA), fB = (n, µB,ΣB) with the
same number n of variables, its square root gives a separation measure-
ment [16]:

KL(fA, fB) =
1

2
log(

det ΣB

det ΣA
) +

1

2
Tr[ΣB−1 · ΣA]

+
1

2

(
µA − µB

)T · ΣB−1 ·
(
µA − µB

)
− n

2
. (19)

This is not symmetric, so to obtain a distance we take the average KL-
distance in both directions:

DKL(fA, fB) =

√
|KL(fA, fB)|+ |KL(fB, fA)|

2
(20)

The Kullback-Leibler distance tends to the information distance as two
distributions become closer together; conversely it becomes less accurate
as they move apart.

For comparing relative proximity, ∆Σ(fA, fB) is a better measure near
zero than the symmetrized Kullback-Leibler DKL(fA, fB) distance in
those multivariate Gaussian cases so far tested and may be computa-
tionally quicker for handling large batch processes.
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5 Dimensionality reduction of spatial density
arrays

We shall illustrate the differences of spatial features in given data sets
obtained from the distribution of local density for real and simulated
planar stochastic fibre networks. In such cases there is benefit in mutual
information difference comparisons of samples in the set but the difficulty
is often the large number of samples in a set of interest—perhaps a
hundred or more. Human brains can do this very well; the enormous
numbers of optical sensors that stream information from the eyes into
the brain with the result that we have a 3-dimensional reduction which
serves to help us ‘see’ the external environment. We want to see a large
data set organised in such a way that natural groupings are revealed
and quantitative dispositions among groups are preserved. The problem
is how to present the information contained in the whole data set, each
sample yielding a 3×3 covariance matrix Σ and mean µ. The optimum
presentation is to use a 3-dimensional plot, but the question is what to
put on the axes.

To solve this problem we use multi-dimensional scaling, or dimension-
ality reduction, to extract the three most significant features from the
set of samples so that all samples can be displayed graphically in a 3-
dimensional plot. The aim is to reveal groupings of data points that
correspond to the prominent characteristics; in our context we have dif-
ferent former types, grades and differing scales and intensities of fibre
clustering. Such a methodology has particular value in the quality con-
trol for processes with applications that frequently have to study large
data sets of samples from a trial or through a change in conditions of
manufacture or constituents. Moreover, it can reveal anomalous be-
haviour of a process or unusual deviation in a product. The raw data
of one sample from a study of spatial variability might typically consist
of a spatial array of 250×250 pixel density values, so what we solve is a
problem in classification for stochastic image textures.

The method, which we introduced in a preliminary report [11], depends
on extracting the three largest eigenvalues and their eigenvectors from a
matrix of mutual information distances among distributions representing
the samples in the data set. The number in the data set is unimportant,
except for the computation time in finding eigenvalues. This follows the
methods described by Carter et al. [4, 5]. Our study is for datasets of
pixel density arrays from complete sampling of density maps of stochas-
tic textures which incorporate spatial covariances. We report the results
of such work on a large collection of radiographs from commercial papers
made from continuous filtration of cellulose and other fibres, [9].
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The series of computational stages is as follows:

1. Obtain mutual ‘information distances’ D(i, j) among the mem-
bers of the data set of N textures X1, X2, .., XN using the fitted
trivariate Gaussian pixel density distributions.

2. The array of N × N differences D(i, j) is a real symmetric ma-
trix with zero diagonal. This is centralized by subtracting row
and column means and then adding back the grand mean to give
CD(i, j).

3. The centralized matrix CD(i, j) is again a real symmetric ma-
trix with zero diagonal. We compute its N eigenvalues ECD(i),
which are necessarily real, and theN correspondingN -dimensional
eigenvectors V CD(i).

4. Make a 3 × 3 diagonal matrix A of the first three eigenvalues of
largest absolute magnitude and a 3 × N matrix B of the corre-
sponding eigenvectors. The matrix product A · B yields a 3 × N
matrix and its transpose is an N × 3 matrix T, which gives us N
coordinate values (xi, yi, zi) to embed the N samples in 3-space.

Example: Bivariate Gaussians

f(x, y) =
1

2π
√

∆
exp
−1

∆2
(y − µ2)2σ11 + (x− µ1)[(x− µ1)σ22 + 2(−y + µ2))σ12]

µ = (µ1, µ2),

∆ = Det[Σ] = σ11σ22 − σ2
12

Σ =

(
σ11 σ12

σ12 σ22

)
= σ11

(
1 0
0 0

)
+ σ12

(
0 1
1 0

)
+ σ22

(
0 0
0 1

)
Σ−1 =

(
σ22
∆ −σ12

∆
−σ12

∆
σ11
∆

)
Put δµi = (µAi − µBi ).

Then we have

Dµ(fA, fB) =√
δµT · Σ−1 · δµ =

√
δµ2 (σ11δµ2 − σ12δµ1)

∆
+
δµ1 (σ22δµ1 − σ12δµ2)

∆
.

Numerical example:

ΣA =

(
1 0
0 1

)
, ΣB =

(
3 2
2 6

)
, ΣB−1

=

(
3/7 −1/7
−1/7 3/14

)
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Figure 9: Embedding of 20 evaluations of information distance for the bi-
variate covariances arising from a Poisson line process of line segments,
(15), with x = λ = 1 and m = 2, 3, . . . 21. The starting green point in
the lower right is for m = 2 and the red end point is for m = 21.

ΣA−1/2 · ΣB · ΣA−1/2
=

(
1 0
0 1

)(
3 2
2 6

)(
1 0
0 1

)
=

(
3 2
2 6

)
,

with eigenvalues : λ1 = 7, λ2 = 2.

DΣ(ΣA,ΣB) =

√√√√1

2

n∑
j=1

log2(λj) ≈ 1.46065

∆Σ(ΣA,ΣB) =

√
log

7 + 2

4
≈ 0.9005.

For comparison, the symmetrized Kullback-Leibler distance [16] is given
by

DKL(ΣA,ΣB) =
1

2

(√
1

2
log 14− 19

28
+

√
1

2
log

1

14
+

7

2

)
≈ 1.1386.

6 Analysis of samples

6.1 Analytic results for Poisson processes of line segments
and rectangles

We provide here some graphics showing three dimensional embeddings
of Poisson processes that yield stochastic textures of pixel density, using
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the analysis in §3.

Figure 9 shows an embedding of 20 samples calculated for a Poisson
line process of line segments, (15), with x = λ = 1 and m = 2, 3, . . . 21.
The starting green point in the lower right is for m = 2 and the red
end point is for m = 21. Figure 10 shows an embedding of 18 samples
calculated for a planar Poisson process of unit squares, from (10), with
ω = λ = 1. It shows the separation into two groups of samples: analysed
with small base pixels, x = 0.1 right, and with large base pixels, x =
1 left. Figure 11 shows an embedding of 18 samples calculated for a
planar Poisson process of rectangles with aspect ratio 5:1, from (10),
with ω = 0.2, λ = 1. Again it shows the separation into two groups of
samples analysed with small pixels, right, and with large pixels, left.

6.2 Deviations from Poisson arising from clustering

Our three spatial variables for each spatial array of data are the mean
density in a central pixel, mean of its first neighbours, and mean of its
second neighbours. We begin with analysis of a set of 16 samples of
areal density maps for simulated stochastic fibre networks made from
the same number of 1mm fibres but with differing scales (clump sizes)
and intensities (clump densities) of fibre clustering. Among these is the
standard unclustered Poisson fibre network; all samples have the same
mean density.

Figure 12 gives analyses for spatial arrays of pixel density differences
from Poisson networks. It shows a plot of DΣ(fA, fB) as a cubic-
smoothed surface (left), and as a contour plot (right), for geodesic infor-
mation distances among 16 datasets of 1mm pixel density differences be-
tween a Poisson network and simulated networks made from 1mm fibres.
Each network has the same mean density but with different scales and
densities of clustering; thus the mean difference is zero in this case. Sec-
ond row: Dimensionality reduction embedding of the same data grouped
by numbers of fibres in clusters and cluster densities. Using pixels of the
order of fibre length is appropriate for extracting information on the
sizes of typical clusters. The embedding reveals the clustering features
as orthogonal subgroups.

Next, Figure 13 gives analyses for pixel density arrays of the clustered
networks. It shows on the left the plot of DΣ(fA, fB) as a cubic-
smoothed surface (left) for trivariate Gaussian information distances
among the 16 datasets of 1mm pixel densities for simulated networks
made from 1mm fibres, each network with the same mean density but
with different clustering. In this case the trivariate Gaussians all have
the same mean vectors. Shown on the right is the dimensionality re-
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duction embedding of the same data grouped by numbers of fibres in
clusters and cluster densities; the solitary point is a Poisson network of
the same fibres.

6.3 Effect of mean density in Poisson structures

Figure 14 gives analyses for pixel density arrays for Poisson networks
of different mean density. It shows the plot of DΣ(fA, fB) as a cubic-
smoothed surface (left), for trivariate Gaussian information distances
among 16 simulated Poisson networks made from 1mm fibres, with dif-
ferent mean density, using pixels at 1mm scale. Also shown is, (right)
dimensionality reduction embedding of the same Poisson network data,
showing the effect of mean network density.

6.4 Analysis of commercial samples

Figure 15 shows a 3-dimensional embedding for a data set from [9] in-
cluding 182 paper samples from gap formers, handsheets, pilot machine
samples and hybrid formers. We see that to differing degrees the em-
bedding separates these different and very disparate forming methods by
assembling them into subgroups. This kind of discrimination could be
valuable in evaluating trials, comparing different installations of similar
formers and for identifying anomalous behaviour.

The benefit from these analyses is the representation of the important
structural features of number of fibres per cluster and cluster density,
by almost orthogonal subgroups in the embedding.

6.5 Analysis of Saccharomyces Cerevisiae yeast and hu-
man genomes

This yeast is the genome studied in [3] for which we showed that all
20 amino acids along the protein chains exhibited mutual clustering,
and separations of 3-12 are generally favoured between repeated amino
acids, perhaps because this is the usual length of secondary structure, cf.
also [1]. The database of sample sequences is available on the Saccha-
romyces Genome Database [19]. Here we mapped the sequences of the
20 amino acids A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y onto the
20 grey-level values 0.025, 0.075, . . . , 0.975 so yielding a grey-level bar-
code for each sequence, Figure 1. Given the usual length of secondary
structure to range from 3 to 12 places along a sequence, we used spatial
covariances between each pixel and its successive 12 neighbours. Fig-
ure 16 plots the determinants of the 12-variate spatial covariances of 20
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Figure 10: Embedding of 18 evaluations of information distance for the
bivariate covariances arising from a planar Poisson process of squares,
(10), with ω = λ = 1. The two groups arise from different schemes
of inspection pixels. Right group used small base pixels with x = 0.1,
from blue to pink m = 2, 3, . . . , 10; Left group used large base pixels with
x = 1, from green to red m = 2, 3, . . . , 10.

for yeast, black Y, together with 3 Poisson random sequences of 100,000
amino acids with the yeast relative abundances, blue RY. Also shown
are 20 samples of human sequences, red H, and 3 Poisson sequences of
100,000 amino acids with the human relative abundances, green RH.
Figure 17 shows an embedding of these 20 12-variate spatial covari-
ances for yeast, small black points, together with 3 Poisson sequences
of 100,000 amino acids with the yeast relative abundances, large blue
points, and 20 human DNA sequences, medium red points using data
from the NCBI Genbank Release 197.0 [15], and 3 Poisson sequences of
100,000 amino acids with the human relative abundances, large green
points. The sequences ranged in length from 340 to 1900 amino acids.
As with the original analysis of recurrence spacings [3] which revealed
clustering, the difference of the yeast and human sequence structures
from Poisson is evident. However, it is not particularly easy to distin-
guish yeast from human sequences by this technique, both lie in a convex
region with the Poisson sequences just outside, but there is much scat-
ter. Further analyses of genome structures will be reported elsewhere.
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Figure 11: Embedding of 22 evaluations of information distance for the
bivariate covariances arising from a planar Poisson process of rectangles,
(10), with ω = 0.2, λ = 1. The two groups arise from different schemes
of inspection pixels. Left group used large base pixels x = 1, from green
to red m = 2, 3, . . . , 10; Right group used small base pixels x = 0.1, from
blue to pink m = 2, 3, . . . , 10.
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Figure 12: Pixel density differences from Poisson networks. Left: plot
of DΣ(fA, fB) as a cubic-smoothed surface, for trivariate Gaussian in-
formation distances among 16 datasets of 1mm pixel density differences
between a Poisson network and simulated networks made from 1mm fi-
bres, each network has the same mean density but with different cluster-
ing. Right: Embedding of the same data grouped by numbers of fibres in
clusters and cluster densities.
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Figure 13: Pixel density arrays for clustered networks: Left: plot of
DΣ(fA, fB) as a cubic-smoothed surface, for trivariate Gaussian infor-
mation distances among 16 datasets of 1mm pixel density arrays for
simulated networks made from 1mm fibres, each network with the same
mean density but with different clustering. Right: Embedding of the same
data grouped by numbers of fibres in clusters and cluster densities; the
solitary point is an unclustered Poisson network.

0

1

0.0

0.5

-0.2

0.0

0.2

Figure 14: Pixel density arrays for Poisson networks of different mean
density. Left: Plot of DΣ(fA, fB) as a cubic-smoothed surface (left), for
trivariate Gaussian information distances among 16 simulated Poisson
networks made from 1mm fibres, with different mean density, using pix-
els at 1mm scale. Right: Embedding of the same Poisson network data,
showing the effect of mean network density.



C.T.J. Dodson and W.W. Sampson 21

-5

0

5

0

2

4

-1.0

-0.5

0.0

0.5

Figure 15: Embedding using 182 trivariate Gaussian distributions for
samples from the data set [9]. Blue points are from gap formers; or-
ange are various handsheets, purple are from pilot paper machines and
green are from hybrid formers. The embedding separates these different
forming methods into subgroups.
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Figure 16: Determinants of 12-variate spatial covariances for 20 sam-
ples of yeast amino acid sequences, black Y, together with 3 Poisson
sequences of 100,000 amino acids with the yeast relative abundances,
blue RY. Also shown are 20 samples of human sequences, red H, and
3 Poisson sequences of 100,000 amino acids with the human relative
abundances, green RH.
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Figure 17: 12-variate spatial covariance embeddings for 20 samples of
yeast amino acid sequences, small black points, together with 3 Poisson
sequences of 100,000 amino acids with the yeast relative abundances,
large blue points. Also shown are 20 human DNA sequences, medium
red points, and 3 Poisson sequences of 100,000 amino acids with the
human relative abundances, large green points.
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