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Abstract. Dimensionality reduction helps to identify small numbers of
essential features of stochastic fibre networks for classification of im-
age pixel density datasets from experimental radiographic measurements
of commercial samples and simulations. Typical commercial macro-fibre
networks use finite length fibres suspended in a fluid from which they are
continuously deposited onto a moving bed to make a continuous web; the
fibres can cluster to differing degrees, primarily depending on the fluid
turbulence, fibre dimensions and flexibility. Here we use information ge-
ometry of trivariate Gaussian spatial distributions of pixel density among
first and second neighbours to reveal features related to sizes and density
of fibre clusters.
Keywords: Dimensionality reduction, fibre networks, fibre clus-
ters, spatial covariance, trivariate Gaussian, radiographic im-
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1 Introduction

Near-planar, non-woven stochastic fibre networks are manufactured for a vari-
ety of applications such as, at the macroscale for printing, textiles, reinforcing,
and filtration and at the nanoscale in medicine. Figure 1 shows a selection of
electron micrographs for networks at different scales. Radiography or optical
densitometry yield areal density images of the kinds shown in Figure 2.

Much analytic work has been done on modelling of the statistical geometry of
such networks and their behaviour in regard to strength, fluid ingress or trans-
fer [1,2,3]. Using complete sampling by square cells, their areal density distri-
bution is typically well represented by a log-gamma or a (truncated) Gaussian
distribution of variance that decreases monotonically with increasing cell size;
the rate of decay is dependent on fibre and fibre cluster dimensions. Clustering of
fibres is well-approximated by Poisson processes of Poisson clusters of differing
density and size. A Poisson fibre network is a standard reference structure for
any given size distribution of fibres; its statistical geometry is well-understood
for finite and infinite fibres. Note that any skewness associated with the under-
lying point process of fibre centres becomes negligible through the process of
sampling by square cells [4].



Fig. 1. Electron micrographs of four stochastic fibrous materials. Top left: Nonwoven
carbon fibre mat; Top right: glass fibre filter; Bottom left: electrospun nylon nanofibrous
network (Courtesy S.J. Eichhorn and D.J. Scurr); Bottom right: paper using wood
cellulose fibres—typically flat ribbonlike, of length 1 to 2mm and width 0.02 to 0.03mm.

In the present paper we use information geometry of trivariate Gaussian spatial
distributions of pixel density with covariances among first and second neighbours
to reveal features related to sizes and density of fibre clusters, which could arise in
one, two or three dimensions. For isotropic spatial processes, which we consider
here, the variables are means over shells of first and second neighbours, respec-
tively, which share the population mean with the central pixel. For anisotropic
networks the neighbour groups would be split into more, orthogonal, new vari-
ables to pick up the spatial anisotropy in the available spatial directions. What
we know analytically is the geodesic distance between two multivariate Gaus-
sians, A,B, of the same number n of variables in two particular cases [5]:

1. µA 6= µB,ΣA = ΣB = Σ : fA = (n, µA, Σ), fB = (n, µB , Σ)

Dµ(fA, fB) =

√
(µA − µB)

T ·Σ−1 · (µA − µB). (1)



Fig. 2. Areal density radiographs of three paper networks made from natural wood cel-
lulose fibres, with constant mean coverage, c̄ ≈ 20 fibres, but different distributions of
fibres. Each image represents a square region of side length 5 cm; darker regions cor-
respond to higher coverage. The left image is similar to that expected for a Poisson
process of the same fibres, so typical real samples exhibit clustering of fibres.

2. µA = µB = µ,ΣA 6= ΣB : fA = (n, µ,ΣA), fB = (n, µ,ΣB)

DΣ(fA, fB) =

√√√√1

2

n∑
j=1

log2(λj), with {λj} = Eig(ΣA−1/2 ·ΣB ·ΣA−1/2
).

(2)

From the form of DΣ(fA, fB) in (2) it may be seen that an approximate mono-
tonic relationship arises with a more easily computed symmetrized log-trace
function given by
∆Σ(fA, fB) =√

log

(
1

2n

(
Tr(ΣA−1/2 ·ΣB ·ΣA−1/2

) + Tr(ΣB−1/2 ·ΣA ·ΣB−1/2
)
))

. (3)

This is illustrated by the plot of DΣ(fA, fB) from equation (2) on ∆Σ(fA, fB)
from equation (3) in Figure 3 for 185 trivariate Gaussian covariance matrices.
For comparing relative proximity, this is a better measure near zero than the
symmetrized Kullback-Leibler distance [8] in those multivariate Gaussian cases
so far tested and may be quicker for handling large batch processes.

2 Dimensionality reduction of spatial density arrays

We follow the methods described by Carter et al. [6,7] for datasets of pixel
density arrays from complete sampling of density maps of simulated networks.
Elsewhere we shall describe the results of such studies on a large collection of
radiographs from commercial networks.
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Fig. 3. Plot of DΣ(fA, fB) from (2) on ∆Σ(fA, fB) from (3) for 185 trivariate Gaus-
sian covariance matrices.

Our three spatial variables are central pixel, mean of its first neighbours, and
mean of its second neighbours. Figure 4 gives analyses for spatial arrays of pixel
density differences from Poisson networks. It shows a plot of DΣ(fA, fB) as a
cubic-smoothed surface (left), and as a contour plot (right), for geodesic infor-
mation distances among 16 datasets of 1mm pixel density differences between a
Poisson network and simulated networks made from 1mm fibres. Each network
has the same mean density but with different scales and densities of cluster-
ing; thus the mean difference is zero in this case. Second row: Dimensionality
reduction embedding of the same data grouped by numbers of fibres in clusters
and cluster densities. Using pixels of the order of fibre length is appropriate for
extracting information on the sizes of typical clusters. The embedding reveals
the clustering features as orthogonal subgroups.

Next, Figure 5 gives analyses for pixel density arrays of the clustered networks.
It shows the plot of DΣ(fA, fB) as a cubic-smoothed surface (left), and as a
contour plot (right), for trivariate Gaussian information distances among the
16 datasets of 1mm pixel densities for simulated networks made from 1mm fi-
bres, each network with the same mean density but with different clustering. In
this case the trivariate Gaussians all have the same mean vectors. Second row:
Dimensionality reduction embedding of the same data grouped by numbers of
fibres in clusters and cluster densities; the solitary point is a Poisson network of
the same fibres.
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Fig. 4. Pixel density differences from Poisson networks. Top row: plot of DΣ(fA, fB)
as a cubic-smoothed surface (left), and as a contour plot (right), for trivariate Gaussian
information distances among 16 datasets of 1mm pixel density differences between a
Poisson network and simulated networks made from 1mm fibres, each network has the
same mean density but with different clustering. Second row: Embedding of the same
data grouped by numbers of fibres in clusters and cluster densities.
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Fig. 5. Pixel density arrays for clustered networks: Top row: plot of DΣ(fA, fB) as
a cubic-smoothed surface (left), and as a contour plot (right), for trivariate Gaussian
information distances among 16 datasets of 1mm pixel density arrays for simulated
networks made from 1mm fibres, each network with the same mean density but with
different clustering. Second row: Embedding of the same data grouped by numbers of
fibres in clusters and cluster densities; the solitary point is an unclustered Poisson
network.
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Fig. 6. Pixel density arrays for Poisson networks of different mean density: Top row:
plot of D(fA, fB) = Dµ(fA, fB) + DΣ(fA, fB) as a cubic-smoothed surface (left),
and as a contour plot (right), for trivariate Gaussian information distances among 16
simulated Poisson networks made from 1mm fibres, with different mean density, using
pixels at 1mm scale. Second row: Embedding of the same Poisson network data, showing
the effect of mean network density.



Figure 6 gives analyses for pixel density arrays for Poisson networks of different
mean density. It shows the plot of D(fA, fB) = Dµ(fA, fB) + DΣ(fA, fB) as
a cubic-smoothed surface (left), and as a contour plot (right), for trivariate
Gaussian information distances among 16 simulated Poisson networks made from
1mm fibres, with different mean density, using pixels at 1mm scale. Second row:
Dimensionality reduction embedding of the same Poisson network data, showing
the effect of mean network density.

The benefit from these analyses is the representation of the important structural
features of number of fibres per cluster and cluster density, by almost orthogonal
subgroups in the embedding.
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