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Abstract

Fréchet spaces of sections arise naturally as configurations of a
physical field. For this presentation some recent work in
Fréchet geometry is briefly reviewed, cf. Dodson [5] for some
more details.

An earlier result on the structure of second tangent bundles in
the finite dimensional case was extended to infinite dimensional
Banach manifolds and Fréchet manifolds that could be
represented as projective limits of Banach manifolds. This led
to further results concerning the characterization of second
tangent bundles and differential equations in the more general
Fréchet structure needed for applications.



Introduction
Dodson and Radivoiovici [11, 12] proved that in the case of a
finite n-dimensional manifold M, a vector bundle structure on
T 2M can be well defined if and only if M is endowed with a
linear connection: T 2M becomes then and only then a vector
bundle over M with structure group the general linear group
GL(2n;R).

The manifolds M that admit linear connections are precisely the
paracompact ones. Manifolds with linear connections form a full
subcategory Man∇ of the category Man of smooth manifolds
and smooth maps; the constructions in the above theorems [11]
provide a functor Man∇ −→ VBun [12].

A linear connection is a splitting of TLM, which then induces
splitting in the second jet bundle J2M (called a dissection by
Ambrose et al. [3]) and we get also a corresponding splitting in
T 2L2M.



Dodson and Galanis [6] extended the results to manifolds M
modeled on an arbitrarily chosen Banach space E. Using the
Vilms [29] point of view for connections on infinite dimensional
vector bundles and a new formalism, it was proved that T 2M
can be thought of as a Banach vector bundle over M with
structure group GL(E× E) if and only if M admits a linear
connection.

The case of non-Banach Fréchet modeled manifolds was
investigated [6] but there are intrinsic difficulties with Fréchet
spaces. These include pathological general linear groups,
which do not even admit reasonable topological group
structures.

However, every Fréchet space admits representation as a
projective limit of Banach spaces and under certain conditions
this can persist into manifold structures.



By restriction to Fréchet manifolds obtained as projective limits
of Banach manifolds [13], T 2M gains a vector bundle structure
over M with structure group a new topological group, that in a
generalized sense is of Lie type.

This construction is equivalent to the existence on M of a
specific type of linear connection characterized by a
generalized set of Christoffel symbols.

What makes the Fréchet case important but difficult?

In significant cases in global analysis and physical field theory,
Banach space representations break down and we need
Fréchet spaces, with weaker requirements for their topology.

See for example Clarke [4] for the metric geometry of the
Fréchet manifold of all C∞ Riemannian metrics on a fixed
closed finite-dimensional orientable manifold.



For background to Fréchet space theory see Hamilton [19] and
Neeb [22], Steen and Seebach [26].

However, there is a price to pay for these weaker structural
constraints: Fréchet spaces lack a general solvability theory of
differential equations, even linear ones; also, the space of
continuous linear mappings drops out of the Fréchet category
while the space of linear isomorphisms does not admit a
reasonable Lie group structure.

We shall see that these problems can be worked round to a
certain extent.

The developments described in this short review will be
elaborated in detail in the forthcoming monograph by Dodson,
Galanis and Vassilliou [10].



Fréchet spaces
A seminorm on (eg for definiteness a real) vector space X is a
real valued map p : X → R such that

p(x) ≥ 0, (i)
p(x + y) ≤ p(x) + p(y), (ii)

p(λx) = |λ|p(x), ∀x , y ∈ X , and λ ∈ R. (iii)

A family of seminorms Γ = {pα}α∈I on X defines a unique
topology TΓ compatible with the vector structure of X .

Neighborhood base BΓ of TΓ is determined by the family

S(∆, ε) = {x ∈ F : p(x) < ε, ∀ p ∈ ∆} .

BΓ = {S(∆, ε) : ε > 0 and ∆ a finite subset of Γ} ,



Induced topology TΓ on X by p is largest making all seminorms
continuous but is not necessarily Hausdorff. (X , TΓ) is a locally
convex topological vector space and local convexity of topology
on X is its subordination to a family of seminorms.

Hausdorffness: requires the further property

x = 0⇔ p(x) = 0, ∀p ∈ Γ.

Then it is metrizable if and only if Γ is countable.

Convergence: of (xn)n∈N in X depends on all of Γ

xn → x ⇔ p(xn − x)→ 0, ∀p ∈ Γ.

Completeness: if and only if convergence in X of every

(xn)n∈N ∈ X with lim
n.m→∞

p(xn − xm) = 0; ∀ p ∈ Γ.



Definition
A Fréchet space is a topological vector space F that is locally
convex, Hausdorff, metrizable and complete.
So, every Banach space is a Fréchet space, with just one
seminorm and that one is a norm. More interesting examples
include the following:
I The space R∞ =

∏
n∈N
Rn, endowed with the cartesian

topology, is a Fréchet space with corresponding family of
seminorms

{pn(x1, x2, ...) = |x1|+ |x2|+ ...+ |xn|}n∈N .

Metrizability can be established by putting

d(x , y) =
∑

i

|xi − yi |
2i(1 + |xi − yi |)

.



In R∞ the completeness is inherited from that of each copy
of the real line. For if x = (xi) is Cauchy in R∞ then for
each i , (xm

i ),m ∈ N is Cauchy in R and hence converges,
to Xi say, and (Xi) = X ∈ R∞ with d(xi ,Xi)→ 0 as i →∞.

Separability arises from the countable dense subset of
elements having finitely many rational components and the
remainder zero; second countability comes from
metrizability.

Hausdorfness implies that a compact subset of a Fréchet
space is closed; a closed subspace is a Fréchet space and
a quotient by a closed subspace is a Fréchet space.



R∞ is a special case from a classification for Fréchet
spaces [22]. For each seminorm pn = || ||n define the
normed subspace Fn = F/p−1

n (0) by factoring out the null
space of pn.

Then the seminorm requirement provides a linear injection
into the product of normed spaces

p : F →
∏
n∈N

Fn : f 7→ (pn(f ))n∈N

and completeness of F is equivalent to closedness of p(F )
in the Banach product of the closures Fn and p extends to
an embedding of F in this product.

This embedding yields limiting processes for geometric
structures in Fréchet manifolds modelled on F .



I More generally, any countable cartesian product of Banach
spaces F =

∏
n∈N En is a Fréchet space with topology

defined by the seminorms (qn)n∈N, given by

qn(x1, x2, ...) =
n∑

i=1

‖xi‖i , where ‖ · ‖i is norm on Ei .

I The space of continuous functions C0(R,R) is a Fréchet
space with seminorms (pn)n∈N defined by

pn(f ) = sup
{
|f (x)| , x ∈ [−n,n]

}
.

I The space of smooth functions C∞(I,R), where I is a
compact interval of R, is a Fréchet space with seminorms
defined by

pn(f ) =
n∑

i=0

sup
{ ∣∣∣Di f (x)

∣∣∣ , x ∈ I
}
.



I The space C∞(M,V ), of smooth sections of the vector
bundle V over compact smooth Riemannian manifold M
with covariant derivative ∇, is a Fréchet space with

||f ||n =
n∑

i=0

supx |∇i f (x)|, for n ∈ N.

I Fréchet spaces of sections arise naturally as configurations
of a physical field. Then the moduli space, consisting of
inequivalent configurations of the physical field, is the
quotient of the infinite-dimensional configuration space X
by the appropriate symmetry gauge group.

Typically, the configuration space X is modelled on a
Fréchet space of smooth sections of a vector bundle over a
closed manifold. For example, see Omori [23, 24] and
Clarke [4].



Banach second tangent bundle
Let M be a C∞−manifold modeled on Banach space E with
atlas {(Uα, ψα)}α∈I .
It induces atlas {(π−1

M (Uα),Ψα)}α∈I of TM with

Ψα : π−1
M (Uα) −→ ψα(Uα)× E : [c, x ] 7−→ (ψα(x), (ψα ◦ c)′(0)),

where [c, x ] stands for the equivalence class of a smooth curve
c of M with c(0) = x and

(ψα ◦ c)′(0) = [d(ψα ◦ c)(0)](1).

The corresponding trivializing system of T (TM) is denoted by

{(π−1
TM(π−1

M (Uα)), Ψ̃α)}α∈I .

Adopting the formalism of Vilms [29], a connection on M is a
vector bundle morphism: ∇ : T (TM) −→ TM.



∇ has the additional property that the mappings
ωα : ψα(Uα)× E→ L(E,E) defined by the local forms of ∇ :

∇α : ψα(Uα)× E× E× E→ ψα(Uα)× E

with ∇α := Ψα ◦ ∇ ◦ (Ψ̃α)−1, α ∈ I, via the relation

∇α(y ,u, v ,w) = (y ,w + ωα(y ,u) · v),

are smooth. Furthermore, ∇ is a linear connection on M if and
only if {ωα}α∈I are linear with respect to the second variable.

Such a connection ∇ is fully characterized by the family of
Christoffel symbols {Γα}α∈I , which are smooth mappings

Γα : ψα(Uα) −→ L(E,L(E,E))

defined by Γα(y)[u] = ωα(y ,u), (y ,u) ∈ ψα(Uα)× E.



These Christoffel symbols satisfy the compatibility condition:

Γα(σαβ(y))(dσαβ(y)(u))[d(σαβ(y))(v)] + (d2σαβ(y)(v))(u) =
= dσαβ(y)((Γβ(y)(u))(v)),

for all (y ,u, v) ∈ ψα(Uα ∩ Uβ)× E× E, and d , d2 are first and
second differential. σαβ denotes the diffeomorphisms ψα ◦ ψ−1

β

of E.

For further details and the relevant proofs see Vilms [29].



Take smooth M modeled on Banach E with atlas {(Uα, ψα)}α∈I .
For each x ∈ M define equivalence relation on
Cx = {f : (−ε, ε)→ M | f smooth and f (0) = x , ε > 0}:

f ≈x g ⇔ f
′
(0) = g′(0) and f ′′(0) = g′′(0),

where by f
′

and f
′′

we denote, respectively, the first and the
second derivatives of f :

f ′ : (−ε, ε)→ TM : t 7−→ [df (t)](1)

f ′′ : (−ε, ε)→ T (TM) : t 7−→ [df ′(t)](1).

The tangent space of order two of M at the point x is the
quotient T 2

x M = Cx/ ≈x .

The tangent bundle of order two of M is the union of all tangent
spaces of order 2: T 2M := ∪

x∈M
T 2

x M.



Of course, T 2
x M can be thought of as a topological vector space

isomorphic to E× E via the bijection

T 2
x M '←→ E× E : [f , x ]2 7−→ ((ψα ◦ f )′(0), (ψα ◦ f )′′(0)),

where [f , x ]2 is the equivalence class of f with respect to ≈x .
However, that structure depends on the choice of the chart
(Uα, ψα), hence a definition of a vector bundle structure on
T 2M cannot be achieved by the use of the above bijections.

The geometric way to overcome this obstacle is to assume that
the manifold M is endowed with the additional structure of a
linear connection, Dodson and Galanis [6], following the
finite-dimensional method of Dodson and Radivoiovici [11].

Theorem ([6])
For every linear connection ∇ on the Banach manifold M,
T 2M becomes a Banach vector bundle with structure
group the general linear group GL(E× E).



Proof
Let π2 : T 2M → M be the natural projection of T 2M to M with
π2([f , x ]2) = x and {Γα : ψα(Uα) −→ L(E,L(E,E))}a∈I the
Christoffel symbols of the connection D with respect to the
covering {(Ua, ψa)}a∈I of M. Then, for each α ∈ I, we define the
mapping Φα : π−1

2 (Uα) −→ Uα × E× E with

Φα([f , x ]2) = (x , (ψα ◦ f )′(0), (ψα ◦ f )′′(0)

+Γα(ψα(x))((ψα ◦ f )′(0))[(ψα ◦ f )′(0)]).

Well defined and injective, these are also surjective since every
(x ,u, v) ∈ Uα × E× E can be obtained through Φα as image of
the equivalence class of the smooth curve

f : R→ E : t 7→ ψα(x) + tu +
t2

2
(v − Γα(ψα(x))(u)[u]),

appropriately restricted in order to take values in ψα(Uα). On
the other hand, the projection of each Φα to the first factor
coincides with the natural projection π2 : pr1 ◦ Φα = π2.



Therefore, the trivializations {(Uα,Φα)}a∈I define a fibre bundle
structure on T 2M and we need to consider change of chart
maps.

If (Uα, ψα), (Uβ, ψβ) are two overlapping charts, let
(π−1

2 (Uα),Φα), (π−1
2 (Uβ),Φβ) be the corresponding

trivializations of T 2M. Taking into account the compatibility
condition above satisfied by the Christoffel symbols {Γα} we
see that

(Φα ◦ Φ−1
β )(x ,u, v) = Φα([f , x ]2)

where (ψβ ◦ f )′(0) = u and (ψβ ◦ f )′′(0) + Γβ(ψβ(x))(u)[u] = v .

After some algebra,
(Φα ◦ Φ−1

β )(x ,u, v)
= (σαβ(ψβ(x)),dσαβ(ψβ(x))(u),dσαβ(ψβ(x))(v)),

where σαβ are the diffeomorphisms ψα ◦ ψ−1
β .



Hence, the restrictions to the fibres

Φα,x ◦ Φ−1
β,x : E× E→ E× E :(u, v) 7−→ (Φα ◦ Φ−1

β )|
π−1

2 (x)
(u, v)

are linear isomorphisms and the mappings:

Tαβ : Uα ∩ Uβ → L(E× E,E× E) : x 7−→ Φα,x ◦ Φ−1
β,x

are smooth since ∀α, β ∈ I, Tαβ = (dσαβ ◦ ψβ)× (dσαβ ◦ ψβ).

As a result, T 2M is a vector bundle over M with fibres of type
E× E and structure group GL(E× E).
T 2M is isomorphic to TM × TM since both bundles are
characterized by the same transition function cocycle
{(dσαβ ◦ ψβ)× (dσαβ ◦ ψβ)}α,β∈I . �
The converse of this theorem was proved also in [6].

These theorems coincide in the finite dimensional case with the
earlier results since the corresponding transition functions are
identical (see Dodson and Radivoiovici [11] Corollary 2).



The results [11, 12] on the frame bundle of order two

L2(M) := ∪
x∈M
Lis(E× E,T 2

x M),

were extended also to the Banach manifold M by Dodson and
Galanis:

Theorem ([7])
Every linear connection ∇ on the second order tangent
bundle T 2M on the Banach manifold M corresponds
bijectively to a connection ω of L2(M).
Fréchet second tangent bundle
Let F1 and F2 be two Hausdorff locally convex topological
vector spaces, and let U be an open subset of F1. A continuous
map f : U → F2 is called differentiable at x ∈ U if there exists a
continuous linear map Df (x) : F1 → F2 such that

R(t , v) :=

{
1
t (f (x + tv)− f (x)− Df (x)(tv)) , t 6= 0

0, t = 0

is continuous at every (0, v) ∈ R× F1. The map f will be said to
be differentiable if it is differentiable at every x ∈ U.



We call Df (x) the differential (or derivative) of f at x .
As in classical (Fréchet) differentiation, Df (x) is uniquely
determined; see Leslie [20] and [21] for more details.
A map f : U → F2, as before, is called C1-differentiable if it is
differentiable at every point x ∈ U, and we have continuity of
the (total) differential or (total) derivative

Df : U × F1 → F2 : (x , v) 7→ Df (x)(v)

This Df does not involve the space of continuous linear maps
L(F1,F2), avoiding the possibility of dropping out of the Fréchet
category when F1 and F2 are Fréchet spaces.
Cn-differentiability (n ≥ 2) can be defined by induction and
C∞-differentiability follows.

Galanis and Vassiliou [14, 28] for tangent and frame bundles
yields a vector bundle structure on second order tangent
bundles for Fréchet manifolds obtainable as projective limits of
Banach manifolds, Dodson and Galanis [6].



Let M be a smooth manifold modeled on the Fréchet space F.
Taking into account that the latter always can be realized as a
projective limit of Banach spaces {Ei ; ρji}i,j∈N (i.e. F ∼= lim←−E

i )
we assume that the manifold itself is obtained as the limit of a
projective system of Banach modeled manifolds {M i ;ϕji}i,j∈N.

Then, it was proved [6] that the second order tangent bundles
{T 2M i}i∈N form also a projective system with limit
(set-theoretically) isomorphic to T 2M.

We define a vector bundle structure on T 2M by means of a
certain type of linear connection on M.
Problems with the structure group of this bundle are overcome
by replacing the pathological GL(F× F) by the new topological
(’generalized smooth’ Lie) group:

H0(F× F) := {(l i)i∈N ∈
∞∏

i=1

GL(Ei×Ei) : lim←− l i exists}.



Precisely, H0(F× F) is a topological group that is isomorphic to
the projective limit of the Banach-Lie groups

H0
i (F× F) : = {(l1, l2, ..., l i)i∈N ∈

i∏
k=1

GL(Ek×Ek )} :

ρjk ◦ l j = lk ◦ ρjk (k ≤ j ≤ i).

Also, it can be considered as a generalized Lie group via its
embedding in the topological vector space L(F× F).

Theorem ([6])
If a Fréchet manifold M = lim←−M i is endowed with a linear
connection ∇ that can be realized also as the projective
limit of connections ∇ = lim←−∇

i , then T 2M is a Fréchet
vector bundle over M with structure group H0(F× F).



Proof
Following the terminology established above, we consider
{(Uα = lim←−U i

α, ψα = lim←−ψ
i
α)}α∈I an atlas of M. Each linear

connection ∇i (i ∈ N), which is naturally associated to a family
of Christoffel symbols {Γi

α : ψi
α(U i

α)→ L(Ei ,L(Ei ,Ei))}α∈I ,
ensures that T 2M i is a vector bundle over M i with fibres of type
Ei . We defined this structure above, with trivializations:

Φi
α : (πi

2)−1(U i
α) −→ U i

α × Ei × Ei .

The families of mappings {g ji}i,j∈N, {ϕji}i,j∈N, {ρji}i,j∈N are
connecting morphisms of the projective systems
T 2M = lim←−(T 2M i), M = lim←−M i , F = lim←−E

i .

These projections {πi
2 : T 2M i → M i}i∈N and trivializations

{Φi
α}i∈N satisfy

ϕji ◦ πj
2 = πi

2 ◦ g ji (j ≥ i)

(ϕji × ρji × ρji) ◦ Φj
α = Φi

α ◦ g ji (j ≥ i).



We obtain the surjection π2 = lim←−π
i
2 : T 2M −→ M and,

Φα = lim←−Φi
α : π−1

2 (Uα) −→ Uα × F× F (α ∈ I)

is smooth, as a projective limit of smooth mappings, and its
projection to the first factor coincides with π2. The restriction to
a fibre π−1

2 (x) of Φα is a bijection since
Φα,x := pr2 ◦ Φα|π−1

2 (x)
= lim←−(pr2 ◦ Φi

α|(πi
2)−1(x)).

The corresponding transition functions {Tαβ = Φα,x ◦ Φ−1
β,x}α,β∈I

can be considered as taking values in the generalized Lie
group H0(F× F), since Tαβ = ε ◦ T ∗αβ, where {T ∗αβ}α,β∈I are
the smooth mappings

T ∗αβ : Uα ∩ Uβ → H0(F× F) : x 7−→ (pr2 ◦ Φi
α|(πi

2)−1(x))i∈N

with ε the natural inclusion

ε : H0(F× F)→ L(F× F) : (l i)i∈N 7−→ lim←− l i .



Hence, T 2M admits a vector bundle structure over M with
fibres of type F× F and structure group H0(F× F).
This bundle is isomorphic to TM × TM since they have identical
transition functions:

Tαβ(x) = Φα,x◦Φ−1
β,x = (d(ψa◦ψ−1

β )◦ψβ)(x)×(d(ψa◦ψ−1
β )◦ψβ)(x)

�

Also, the converse is true:

Theorem ([6])
If T 2M is an H0(F× F)−Fréchet vector bundle over M
isomorphic to TM × TM, then M admits a linear connection
which can be realized as a projective limit of connections.



Fréchet second frame bundle
Let M = lim←−M i be a manifold with connecting morphisms
{ϕji : M j → M i}i,j∈N and Fréchet space model the limit F of a
projective system of Banach spaces {Fi ; ρji}i,j∈N. Following the
results obtained in [6], if M is endowed with a linear connection
∇ = lim←−∇

i , then T 2M admits a vector bundle structure over M
with fibres of Fréchet type F× F. Then T 2M becomes also a
projective limit of manifolds via the identification
T 2M ' lim←−T 2M i .

Using the connecting morphisms {g ji}i,j∈N of the projective
systems T 2M = lim←−(T 2M i), consider the sequences of linear
isomorphisms

F2M i = ∪
x i∈M i

{(hk )k=1,...,i : hk ∈ Lis(Fk × Fk ,T 2
ϕik (x i )M

k )

with gmk ◦ hm = hk ◦ (ρmk × ρmk ), i ≥ m ≥ k}.



We replace the pathological general linear group GL(F) by

H0(F) := H0(F,F) = {(l i)i∈N ∈
∞∏

i=1

GL(Fi) : lim←− l i exists}.

The latter can be thought of also as a generalized Fréchet Lie
group by being embedded in H(F) := H(F,F), from Dodson,
Galanis and Vassiliou [8]:

Theorem ([8])
F2M i is a principal fibre bundle over M i with structure
group the Banach Lie group H i

0(F× F) := H i
0(F× F,F× F).

The limit lim←−F
2M i is a Fréchet principal bundle over M with

structure group H0(F× F).
We call the generalized bundle of frames of order two of the
Fréchet manifold M = lim←−M i the principal bundle

F2(M) := lim←−F
2M i .



This is a natural generalization of the usual frame bundle and
from Dodson, Galanis and Vassiliou [8] we have:

Theorem ([8])
For the action of the group H0(F× F) on the right of the
product F2(M)× (F× F) :

((hi), (ui , v i))i∈N · (g i)i∈N = ((hi ◦ g i), (g i)−1(ui , v i))i∈N,

the quotient space F2M × (F× F)�H0(F× F) is isomorphic
with T 2M.

Consider a connection of F2(M) represented by the 1-form
ω ∈ Λ1(F2(M),L(F× F)), with smooth atlas
{(Uα = lim←−U i

α, ψα = lim←−ψ
i
α)}a∈I of M, {(p−1(Uα),Ψα)}a∈I

trivializations of F2(M) and {ωα := s∗αω}a∈I the corresponding
local forms of ω obtained as pull-backs with respect to the
natural local sections {sα} of {Ψα}.



Then a (unique) linear connection can be defined on T 2M by
means of the Christoffel symbols

Γα : ψα(Uα)→ L(F× F,L(F,F× F))

with ([Γα(y)](u))(v) = ωα(ψ−1
α (y))(Tyψ

−1
α (v))(u),

(y ,u, v) ∈ ψα(Uα)× F× F× F.

In Fréchet bundles an arbitrary connection is not easy to
handle, since Fréchet manifolds and bundles lack a general
theory of solvability for linear differential equations. Christoffel
symbols (in the case of vector bundles) or the local forms (in
principal bundles) are affected in representing linear maps
since continuous linear mappings of a Fréchet space do not
remain in the same category.

Galanis [14, 15] solved the problem for connections that can be
obtained as projective limits and Dodson, Galanis and
Vassiliou [8] obtained the following theorem with a number of
areas of application.



Theorem ([8])
Let ∇ be a linear connection of the second order tangent
bundle T 2M = lim←−T 2M i that can be represented as a
projective limit of linear connections ∇i on the (Banach
modelled) factors. Then ∇ corresponds to a connection
form ω of F2M obtained also as a projective limit.

Choice of connection
Dodson, Galanis and Vassiliou [9] studied the way in which the
choice of connection influenced the structure of the second
tangent bundle over Fréchet manifolds, since each connection
determines one isomorphism of T 2M ≡ TM

⊕
TM.

They defined the second order differential T 2g of a smooth
map g : M → N between two manifolds M and N.

In contrast to the case of the first order differential Tg, the
linearity of T 2g on the fibres (T 2

x g : T 2
x M → T 2

g(x)N, x ∈ M) is
not always ensured but they proved a number of results.



Following Vassiliou [27], connections ∇M and ∇N are called
g-conjugate (or g-related) if they commute with those of g :

Tg ◦ ∇M = ∇N ◦ T (Tg).

Locally, for every (x ,u) ∈ Uα × E, the differentiation gives

Tg(φα(x))(ΓM
α (φα(x))(u)(u)) =

ΓN
β (g(φα(x)))(Tg(φα(x))(u))(Tg(φα(x))(u))

+T (Tg)((φα(x))(u,u).

For g-conjugate connections ∇M and ∇N the local expression
of T 2

x g reduces to

(Ψβ,g(x) ◦ T 2
x g ◦ Φ−1

a,x )(u, v) = (Tg(φα(x))(u),Tg(φα(x))(v)).

Theorem ([9])
Let T 2M, T 2N be the second order tangent bundles defined
by the pairs (M,∇M), (N,∇N), and let g : M → N be a
smooth map. For g-conjugate connections ∇M and ∇N the
second order differential T 2g : T 2M → T 2N is a vector
bundle morphism.



Theorem ([9])
Let ∇, ∇′ be two linear connections on M. If g is a
diffeomorphism of M such that ∇ and ∇′ are g-conjugate,
then the vector bundle structures on T 2M, induced by ∇
and ∇′, are isomorphic.
Differential equations
The importance of Fréchet manifolds arises from their ubiquity
as quotient spaces of bundle sections and hence as
environments for differential equations on such spaces. This
was addressed next with Aghasi et al. [1] which provided a new
way of representing and solving a wide class of evolutionary
equations on Fréchet manifolds of sections.
First they considered a Banach manifold M, and defined an
integral curve of ξ as a smooth map θ : J → M, defined on an
open interval J of R, if it satisfies the condition

T 2
t θ(∂t ) = ξ(θ(t)).

Here ∂t is the second order tangent vector of T 2
t R induced by a

curve c : R→ R with c′(0) = 1, c′′(0) = 1.



If M is simply a Banach space E with differential structure
induced by the global chart (E, idE), then the generalization is
clear since the above condition reduces to the second
derivative of θ:

T 2
t θ(∂t ) = θ′′(t) = D2θ(t)(1,1).

Then we proved several theorems [1].

Theorem ([1])
Let ξ be a second order vector field on a manifold M
modeled on Banach space E. Then, the existence of an
integral curve θ of ξ is equivalent to the solution of a
system of second order differential equations on E.

Of course, these second order differential equations depend
not only on the choice of the second order vector field but also
the choice of the linear connection that underpins the vector
bundle structure.



In the case of a Banach manifold that is a Lie group,
M = (G, γ),

Theorem ([1])
Let v be any vector of the second order tangent space of G
over the unitary element. Then, a corresponding left
invariant second order vector field ξ of G may be
constructed. Also, every monoparametric subgroup
β : R→ G is an integral curve of the second order left
invariant vector field ξ2 of G that corresponds to β̈(0).

Extending this to a Fréchet manifold M that is the projective
limit of Banach manifolds from [6], yielded the result:

Theorem ([1])
Every second order vector field ξ on M obtained as
projective limit of second order vector fields {ξi on M i}i∈N
admits locally a unique integral curve θ satisfying an initial
condition of the form θ(0) = x and Ttθ(∂t ) = y , x ∈ M,
y ∈ Tθ(t)M, provided that the components ξi admit also
integral curves of second order.



Ricci Flow on the manifold of Riemannian metrics

Ghahremani-Gol and Razavi [18] used the projective limit of
Banach manifolds to represent the infinite dimensional space of
Riemannian metrics on a compact manifold.

By this means they studied the parabolic partial differential
equation for the Ricci Flow and its integral curves.

They found short-time solutions that are locally unique and in
particular showed that a Ricci flow curve starting from an
Einstein metric is not a geodesic.
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