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Abstract

Aspects of modern information systems that are challenging
computational and statistical analysis are dynamic complexity,
high dimensionality, and inherent stochasticity.

We outline the use of geometric methods to provide
information neighbourhoods for visualization and monitoring
of algorithms, and dynamics of stochastic behavior trajectories.

Geometrization of models of real phenomena give valuable
insights through features that are invariant under the choice of
coordinate representation.

Here we look at computational aspects relating to the study of
real problems, avoiding mathematical details.




Introduction

Aspects of modern information systems that have come to the
fore and challenged computational and statistical analysis have
been dynamic complexity, high dimensionality and inherent
stochasticity. Recent themes for information reuse and
integration highlighted by IRI Keynote speakers have included
uncertain computation [36], and anomaly detection in the
context of privacy protection [3].

By 2013, the annual worldwide internet protocol (IP) traffic is
predicted to be a zettabyte (279 ~ 102" bytes) for which 90% of
consumer IP traffic and 60% of mobile IP traffic will be video.

Digital cameras are merging with smart phones, and visual
computing applications for computational photography and
augmented reality applications are developing rapidly [23],
frequently based on information geometric representation and
optimization methods.



Geometrization of models of real phenomena have long been
known to give valuable insights because of the established
value of analytic geometric features, such as a natural metric,
parallelism, perpendicularity, curvature and geodesic
curves that are invariant under the choice of coordinate
representation.

In information geometry this corresponds to the invariance
of measure functions of probability distributions under
changes of parameters. Interest of geometers is stimulated by
novel applications because these can point to new
developments in the geometrical structures available.

The natural information metric provides distances between
states and along state trajectories, thus facilitating
optimization strategies.



Information reuse and integration, utilising information theory
within information geometry brings important concepts
mirroring physical theory of statistical mechanics: eg. entropy
(ie the ‘mean log probability density’) and its relation to
maximum likelihood methods for model optimization.

We outline information geometry methodology to provide
natural neighbourhoods that respect the intrinsic geometry of
the space of states, for visualization and monitoring of
algorithms, and dynamics of stochastic behaviour trajectories.



1. Computational Information Geometry For

Exponential Families Of Distributions
For a random variable x € R", a set {py} of probability density
functions with parameters 6 = {0;,i = 1,...,n} is an
exponential family if the py express as functions {C, F, ..., Fn}
of x € R" and a function ¢ of § = {64, ...,0,} as:

po(x) = elCOOTE; 0 Fi(0)—(0)}
Exponential families of probability density functions and are

very important and include Gaussian and gamma distributions.
They admit simple embeddings in R"*'.

The JMEF package [19], is a Java library with Matlab interface
and tutorials to create, process and manage mixtures of
exponential families of probability density functions:

http://www.lix.polytechnique.fr/~nielsen/MEF/



jMEF

A Java library to create, process and manage mixtures of exponential families

What are exponential families?

amily is & generic set of probability distributions that admit the following canonical distribution:
pr(0) = exp(< 0,H{z) F(0) + k=)

Exponential families are characterized by the log nermalizer function 7, and include the following well-known distributions:
Gaussian (generic, isstropic Gaussian, diagonal Gaussian, rectified Gaussian or Wald distributions, lognormal), Paissan,
Bernoulli, binemial, multinomial, Laplacian, Gamma (incl. chi-squared), Beta, exponential, Wishart, Dirichlet, Rayleigh,
probability simplex, negative binomial distribution, Weibul, von Misss, Pareto distributions, skew lagistic, etc.

All corresponding farmula of the canonical decomposition are given in the
Mixtures of exponential families provide a generic framework for handling Gaussian mixture models (GMMs also called MoGs
for mixture of Gaussians), mixture of Poisson distributions, and Laplacian mixture models as well.

What is jMEF?

JMEF is a Java cross-platferm library developped by

. JMEF allows one to:

create and manage it f families (MEF for short),

estimate the parameters of a MEF using Bregman soft clustering (equivalent by duality to the Expectation-Maximization
algerithm),

simplify MEFs using Bregman hard clustering (k-means a|g\:rr|thm in natural parameter space),

define a hierachical MEF using Bregman |
+ automatically retrieve the optimal number of compenents in thE mixture using the hierarchical MEF structure.

A quick overview with slides.

A tutarial for the Matlab interfacs Figul’e: From [1 9]




Theorems for processes nearly Poisson, or
nearly uniform, cf. Arwini and Dodson [1, 16]

Theorem 1

For independent positive random variables with a common
probability density function f, having independence of the
sample mean and the sample coefficient of variation is
equivalent to f being the gamma distribution.

Theorem 2

Every neighbourhood of a Poisson process contains a
neighbourhood of processes subordinate to gamma probability
density functions.

Theorem 3

Every neighbourhood of a uniform process contains a
neighbourhood of processes subordinate to log-gamma
probability density functions.



Figure: A tubular neighbourhood of the curve of all exponential
random processes, in the curved surface embedding in R® of the
2-manifold of gamma distributions. From Arwini and Dodson 2008 [1].
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Figure: An affine immersion in Euclidéan space of the curved surface
of log-gamma probability densities on [0, 1], which includes the
uniform distribution as the special case with parametersv =1, r = 1.
The black curves in the surface represent the log-gamma distributions
withv =1 and T = 1, respectively and the spherical neighbourhood
is centred on their intersection. The other two points are for the two
cases (v =0.1,7 = 0.289) and (v = 2.75,7 = 2.24). From Dodson
2012 [16].



Figure: Distances in space of gamma models. Surface height
represents upper bounds on distances from (u, k) = (511,1). Data
points from simulations of Poisson random sequences of length
100000 for expected separation . = 511. In the limit as the sequence
length tends to infinity and the element abundance tends to zero we
expect the gamma parameter v — 1. From Dodson 2012 [16].
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Figure: Maximum likelihood gamma parameter « fitted to separation
statistics for simulations of Poisson random sequences of length
100000 for an element with expected parameters (u, <) = (511,1).
These simulations used the pseudorandom number generator in
Mathematica [32]. From Dodson 2012 [16].
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Figure: Entropy function S for the gamma family of distributions with
entropy gradient flow and integral curves as a surface. On the
surface, the dashed asymptote at k = 1 is the exponential case of
maximum disorder. From Dodson 2010 [14].
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Figure: Constrained degradation of order: Gamma entropy contour
plot (left) with data on progression under noise for surface area
distributions of 3D BCC Voronoi cells from Lucarini [21] as perfect
crystallinity degenerated from large k, v towards k = 16, the
theoretical Poisson Voronoi limit. Curve gives information length L.,
along this disordering trajectory as noise amplitude « increased. The
limit is not total disorder, k = 1, because the Voronoi cell structure is
a constraint. Cf. Dodson 2012 [16].
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Figure: The log-gamma family of probability densities Py(a, v, ) on
1. From
2

[0, 1] as a surface for the case of central mean Ey(a) =
Arwini and Dodson 2008 [1].



Computational Information Geometry:
2. Interactive Mathematica Notebooks

For analytic geometry, numerical procedures and graphics, we
used the computational algebra package Mathematica by
Wolfram [32] in a wide range of applications of common
univariate and bivariate probability density functions in the
books [1, 16].

These interactive Mathematica notebooks are available free for
download from the author’s webpage

http://www.maths.manchester.ac.uk/~kd
/mmaprogs/InfoGeomMMANotebooks/



Mathematica

Seamlessly Flow Ideas to Results:
Compute, Develop, Deploy

the Mathematica Way
‘ Take a Quick Tour

What's New Why Mathematica? Features Customer Stories Resources How to Buy

What Is Mathematica?

Almost any workflow involves computing results, and that's what Mathematica
does—fram building a hedge fund trading website or publishing interactive

ing textbooks to develof bedded image ition algorith or
teaching calculus.

Iathematica is renowned as the world's ulimate application for computations New in 8

But it's much mare—it's the only development platform fully integrating Direct access to Wolframjiipha data
computation into complete workflows, moving you seamlessly from initial ideas
all the way to deployed individual or enterprise solutions

i
E
:
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FUpgrade
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Figure: From [32]
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3. Computational Geometry Algorithms Library

Software available at CGAL [11] is successful for identifying
implementation issues of computational geometry methods.

This Open Source Project offers a C*™ library of algorithms for
common problems in computational geometry:
http://www.cgal.org/
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Computational Geometry Algorithms Library

The goal of the CGAL Open Source Project is to provide easy access to efficient and reliable geometric algorithms in the form of
a C++ library. CGAL is used in various areas needing geometric computation, such as: computer graphics, scientific
visualization, computer aided design and modeling, geographic information systems, molecular biology, medical imaging,
robotics and motion planning, mesh generation, numerical methods... More on the projects using CGAL web page.

The Computational Geometry Algorithms Library (CGAL), offers data structures and algorithms like triangulations (2D
constrained triangulations and Delaunay triangulations in 2D and 3D, periodic triangulations in 3D), Veoronoi diagrams (for 2D and
3D points, 2D additively weighted Voronoi diagrams, and segment Voronoi diagrams), polygons (Boolean operations, offsets,
straight skeleton), polyhedra (Boolean operations), arrangements of curves and their applications (2D and 3D envelopes,
Minkowski sums), mesh generation (2D Delaunay mesh generation and 3D surface and volume mesh generation, skin
surfaces), geometry processing (surface mesh simplification, subdivision and parameterization, as well as estimation of local
differential properties, and approximation of ridges and umbilics), alpha shapes, convex hull algorithms (in 2D, 3D and dD),
search structures (kd trees for nearest neighbor search, and range and segment trees), interpolation (natural neighbor
interpalation and placement of streamlines), shape analysis, fitting, and distances (smallest enclosing sphere of points or
spheres, smallest enclosing ellipsoid of points, principal component analysis), and kinetic data structures.

All these data structures and algorithms operate on geometric objects like points and segments, and perform geometric tests on
them. These objects and predicates are regrouped in CGAL Kermnels.

Finally, the Support Library offers geometric object generators and spatial sorting functions, as well as a matrix search
framework and a solver for linear and quadratic programs. It further offers interfaces to third party software such as the GUI
libraries Qt, Geomview, and the Boost Graph Library.

License
CGAL is distributed under a dual-icense scheme. CGAL can be used together with Open Source software free of charge. Using

CGAL in other contexts can be done by obtaining a commercial license from GeometryFactory. For more details see the License
page.

Figure: From [11]




First order inhomogeneous rate processes
Let /;(a) represent the frequency at the a-cohort, then we have

N(t) = [ h(a)da and Pi(a) = {8

"’i}f’=—a/t(a) so li(a) = h(a)e.

v

3 / N
6 / AN
AN

\ / T\
11/ ;] = N —

0 0.0r
0.2 0.6 10 10

Flgure Initial Iog -gamma densmes Po(a v, 1) are shown in the left
panel for the uniform density - = v = 1, and also for r = 1 with

v = 0.4 and 10. The right panel shows the corresponding fractional
decline with time of the population N(t)/N(0) for these initial
densities. From Dodson 2012 [16].
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Figure: The evolution of the probability density P¢(a, 10, 1) of
unfitness, under a first order inhomogeneous rate process, from an
initial log-gamma density with v = 10, x = 1. Showing how the initially
high population unfitness is reduced over time.
From Dodson 2012 [16].



4. Computational Information Geometry:
Interpreting data

Extracting and using rich information from massive data sets is
a serious challenge. Visual data abounds, so computer vision
and computer graphics are increasingly relying on machine
learning and information-theoretic methods.

Computational information geometry effectively performs
high-fidelity data analysis using the language and invariant
features of geometry, Rabin et al. [26, 27].

This allows mapping of the data in a suitable space for efficient
processing and retrieval of intrinsic information using
coordinate-free operations on the data.



Image Processing

The geometrization of statistics has provided novel algorithms
for manipulating statistical models such as Gaussian mixture
models, Nielsen et al. [25], Takatsu [30], that are commonly
used in image processing.

An image pixel at position (x, y) with colour attributes (red,
green, blue) is embedded into a 5D space so that a 2D colour
image is interpreted as a 5D spatial point cloud.

We then seek a compact generative statistical representation of
the image point set. Such statistical methods are useful for
explaining human cognitive and learning skills, Tenenbaum et
al. [31], and analyzing emerging phenomena of complex
systems using hierarchical Bayesian models.



Amino Acid Clustering in Genome

Molecular biologists have large data sets of amino acid
sequences. Cai et al. analysed [4] for each of the 20 amino
acids X, the statistics of spacings between consecutive
occurrences of X within the Saccharomyces cerevisiae
genome, from 6294 protein chains with sequence lengths up to
n = 4092. The spacing distributions were well approximated by
gamma distributions.

Expect, with 20 types of amino acids distributed at different
abundances along a protein chain, that some would more
clustered (x < 1) and others more evenly spread (x > 1)
compared to Poisson process—which has exponential
spacings and x = 1. In fact none of the amino acids was
distributed with such a low variance, all clustered and so had
greater variance than would result from a Poisson process.
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Figure: Geodesic distances'in space of gamma models, [1, 16].
Surface of upper bounds on distance D from grand mean point

(1, k) = (18,1), the Poisson case. The 20 data points are for the
amino acid sequences from a large database. All amino acids show
clustering by lying to the left of the Poisson random line k = 1.



Dimensionality reduction

In many real world problems we encounter high dimensionality
in large data sets and often do not have the luxury of knowing
the optimal net probability density function family for the
features represented in the data. A fundamental problem in the
identification of probability densities from large
multidimensional data sets, that of efficient dimensionality
reduction, was addressed by Carter et al. [7, 8, 9, 10].

They used information geometry to obtain nearest neighbour
distances by means of geodesic estimates subordinate to a
Fisher information metric giving a non-parametric embedding
(FINE). Also, data dimensionality reduction using
information-preserving component analysis (IPCA) and
information-maximizing component analysis (IMCA).



[FIG4] FINE: first, a PDF p; is estimated for each data set X;. Then, an information-geometric metric is used to learn the geometry
of the manifold of PDFs from pairwise distance measurements. Finally, a Euclidean embedding from the manifold A4, to R is
obtained, associating each original data set X; with its embedded pointin Euclidean space x;.

Figure: From Carter 2011 [10]



Compare Distances

[FIG&] IPCA/IMCA: first, a PDF p; is estimated for each data set X;. Simul usly, a PDF g, is esti dfor each data set Y;=AX;.
Then, an information-geometric metric is used to learn the geometry of the manifold M, of PDFs p;s and manifold A, from PDFs
g;s from pairwise distance measurements. Finally, an objective is calculated to compare the geometry of the two manifolds A,
and M,. For IPCA, we consider the minimization of the sum of squared differences between each pairwise distance on A1, and its
equivalentin AM,. For IMCA, we consider the maximization of the sum of distances in A,

Figure: From Carter 2011 [10]



This method takes account of the true curved geometry of the
data set, rather than displaying as uncurved in a Euclidean
geometry cf.Carter [8], Figure 3.2. The significance is that the
non-obvious global topology of frequency connectivity in the
data is revealed by the geodesics. An illustration using router
traffic on subdomains (comp., rec., sci., talk.) of the Abilene
network showed how anomalous behavior unseen by local
methods could be picked up through dimensionality changes
cf. [8], Figure 3.10.

In document classification, the information metric approach
outperforms standard PCA and Euclidean embeddings (LEM),
Carter et al. [7], and it outperforms traditional approaches to
video indexing and retrieval with real world data, Chen and
Hero [12].



3.4.2 Network Anomaly Detection

Figure 3.9: Map of Abilene router network

As illustrated in Figure 3.9, the Abilene Network is the set of routers which is the

backbone of the *.edu’ network. When an anomaly occurs on the network, there are

changes in the correlation between traffic traces at different points in the network,

Figure: From Carter 2009 [8]
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Fig. 1. 2-dimensional embeddings of 20Newsgroups data. The data displays some natural clustering, in the information based
embedding, while the PCA embedding does not distinguish between classes.

Figure: From Carter et al. 2008 [7]
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Figure 3.10: Neighborhood smoothing applied to Abilene Network traffic data dimension estimation
results. Anomalous activity is preserved and more easily ohserved.

[11,12]. Specifically, when only a few of the routers contribute disproportionably

large amounts of traffic, the intrinsic dimension of the entire network decreases. Using

Figure: From Carter et al. 2007 [6] and 2009 [8]. Near n=244 was

revealed anomalous increased traffic from a single IP address, not
visible in the raw data.
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Figure 3.12: The entropy of the local dimension estimates changes as a function of neighborhood
size k. As k increases to the size of the differing regions (kB = 200 samples each), the
entropy becomes constant and the data is properly clustered. As the neighborhood
incorporates samples from differing manifolds, the entropy decrease until all points
estimate at the same value (k = 350).

Figure: From Carter 2009 [8]
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Figure: From Carter et al. 2008 [7]



Anomaly Detection
Information geometric methods extend to anomaly detection
using large sample size data sets derived from an underlying
probability distribution of unknown parameterization. A
comparison of relevant information theoretic measures that are
intrinsic to information geometry can be found in Lee and
Xiang [20].

They used information-theoretic measures: entropy,
conditional entropy, relative conditional entropy,
information gain, and information cost for anomaly
detection. Described the characteristics of an audit data set,
identify appropriate anomaly detection model to be built, and
explain the performance of the model. lllustrated with case
studies on Unix system call data, BSM data, and network
tcpdump.

Cf. also Gu et al. Measuring intrusion detection capability:
An information theoretic approach:
http://dl.acm.org/citation.cfm?id=1128834



An important problem in naval studies is the extraction and
analysis of seasonal information from large data sets of wave
height measurements obtained by satellite observations.

A new approach based on information geometrical techniques
has yielded useful results, Galanis et al. [18].
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Figure 4. The shape parameter of the Weibull distributions that fit to the significant wave height
satellite data over the North Atlantic Ocean for the months March-May.

Figure: From Galanis et al. 2012 [18]
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Figure 26. The statistical manifolds formed by the monthly values of the satellite records (a) and
WAM outputs (b) as elements of the non-Euclidean space of all Weibull distributions. A classical

“BlueGreenYellow™ color palette has been used depending on their approximate divergence from
annual averages

Figure: From Galanis et al. 2012 [18]. Such methods lend
themselves to automated algorithms to optimize efficiency.
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Figure 6. Doppler detection with sea clutter (x axis : range) for one azimuth.
(at top) classical method based on FFT, (at bottom) new detector
Figure: From Barbaresco 2008 [2]. The information geometric
method correctly and unambiguously detects the anomalous signal.



Target tracking has been shown to be enhanced using
information geometric methods by Cheng et al. [13]:
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Fig. 6. Example of sensor network of three range only sensors for target
localization.
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Fig. 11. Bundle of geodesics of identical FIDs with parallel initial tangent vectors for the sensor network of three ranges-only sensors. Case 1 illustrates the situation of
divergent geodesic bundle and a convergent bundle example is shown in Case 2.

Figure: From Cheng et al. 2012 [13]. Bundles of information
geodesics of the same length in the statistical manifold for three
Sensors.



From Cheng et al. 2012 [13]. Affine immersion of the statistical
manifold for three sensors.
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Fig. 16. Affine immersion for the manifold of three ranges-only sensor network in Example 3.
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