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Abstract. Various contexts of relevance to cyber security involve the
analysis of data that has a statistical character and in some cases the
extraction of particular features from datasets of fitted distributions or
empirical frequency distributions. Such statistics, for example, may be
collected in the automated monitoring of IP-related data during access-
ing or attempted accessing of web-based resources, or may be triggered
through an alert for suspected cyber attacks. Information geometry pro-
vides a Riemannian geometric framework in which to study smoothly
parametrized families of probability density functions, thereby allowing
the use of geometric tools to study statistical features of processes and
possibly the representation of features that are associated with attacks.
In particular, we can obtain mutual distances among members of the
family from a collection of datasets, allowing for example measures of
departures from Poisson random or uniformity, and discrimination be-
tween nearby distributions. Moreover, this allows the representation of
large numbers of datasets in a way that respects any topological features
in the frequency data and reveals subgroupings in the datasets using
dimensionality reduction. Here some results are reported on statistical
and information geometric studies concerning pseudorandom sequences,
encryption-decryption timing analyses, comparisons of nearby signal dis-
tributions and departure from uniformity for evaluating obscuring tech-
niques.
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1 Introduction

The British Columbia Institute of Technology (BCIT) maintained until 2006 an
industrial cyber security incident database (ISID) [8], designed to track incidents
of a cyber security nature that directly affected industrial control systems and
processes. Byres and Lowe [9,8] pointed out that from 1980 to 2000 the cyber
threat was evenly split among internal, external and accidental cases. By 2001
this had changed to 70% external threat sources, 20% accidental, 5% internal
and 5% other. Of these the internal security incidents arose from the following



entry points: business network 43%, human machine interface (HMI) 29%, physi-
cal access to equipment 21% and laptop 7%. Externally the percentages included
attacks from: remote internet 36%, remote dial-up 20%, remote unknown 12%,
VPN connection 8%, remote wireless 8%, the remainder from remote trusted
third party, remote Telco network, remote supervisory control and data acqui-
sition (SCADA) network. The consequences of these attacks was a production
loss of 41% and loss of ability to control or view the plant. Between 1995 and
2000 the number of security incidents averaged 2 per year but that had increased
linearly to 10 per year by 2003. The current successor to ISID is the Repository
of Industrial Security Incidents [57], a database of incidents of a cyber security
nature that have (or could have) affected process control, industrial automation
or supervisory control and data acquisition (SCADA) systems. For a current
view of the problem of criminal use of encrypted messaging systems on smart-
phones, see the New York District Attorney’s report to the 6th Annual Financial
Crimes and Cybersecurity Symposium at the Federal Reserve Bank of New York
on 15 November 2015 [62], with a large bibliography. This sets out the current
capabilities of smartphones and tablets and makes a number of proposals.

The UK government Centre for the Protection of National Infrastructure
(CPNI) [19] and the USA Homeland Security [37] provide up to date information
and advice on cyber security. Wang and Lu [63] provided a comprehensive study
of cyber security needs for the next generation power systems, particularly net-
work vulnerabilities, attack countermeasures, secure communication protocols
and architectures in the Smart Grid. The UK Information Assurance Advisory
Council (IAAC) [52] provides a wide range of documentation, including the latest
Korea-UK Initiatives in Cyber Security Research report [61]. The proceedings
of the recent international conference at the University of Piraeus [45], provides
a collection of more than 30 articles on cyber warfare and security and the
book [56] contains 17 articles treating various aspects of cybersecurity. Via the
assistance of the 2014 US AMS Network Science Mathematical Research Com-
munity, Burstein et al [7] studied the problem of increasingly frequent events
of Border Gateway Protocol route hijacking for traffic interception. They devel-
oped an optimal information monitoring strategy based on an abstract model
for routing networks in which colluding sets of agent nodes conspire to divert
traffic via them by sending false distance information to honest agent nodes.

In this paper we offer some geometrical methods for application in problems
of cyber security which can be addressed through statistical analyses of data.
Information geometry provides a Riemannian geometric framework in which to
study smoothly parametrized families of probability density functions, thereby
allowing the use of geometric tools to study statistical features of processes. Ge-
ometrical provision of this kind has proved an enormous advantage in theoretical
physics and conversely, physical problems have stimulated many advances in dif-
ferential geometry, global analysis and algebraic geometry. The geometrization
of statistical theory [1,2,3,4,5,22] has had similar success and its role in applica-
tions is now widespread and generating new developments of theory, algorithms
and computational information geometry [50,51]. We give a brief introduction



to information geometry in §2 and §2.1, which is sufficient for the understanding
of techniques in the sequel. We outline the information geometry of univariate
and multivariate Gaussians in §2.2, which we use in §7. Situations in which such
methods are relevant to cyber security include discrimination between nearby
signal distributions, comparisons of real signal distributions with those obtained
via random number generators in testing obscuring procedures, and in testing
for anomalous behaviour, for example using departures from uniformity or inde-
pendence.

One aspect of cyber security is concerned with the analysis of the stochas-
tic process of attack events [21]. Such analyses can yield valuable data on the
frequency distributions of attacks and these may be amenable to study using
information geometric methods. In particular, spacings between events of inter-
est may be representable via gamma distributions, since they span a range of
behaviour from clustered through random (ie Poisson) to dispersed, Figure 1; we
discuss their information geometry in §3. Gamma distributions have the property
that the standard deviation is proportional to the mean, characterized in The-
orem ?? below, and they include a representation of Poisson processes through
the 1-parameter family of exponential distributions; this is represented in Fig-
ure ??. Their information geometry was used in a variety of applications [5,24].
In a range of contexts in cryptology for encoding, decoding or for obscuring
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procedures, sequences of pseudorandom numbers are generated. Tests for ran-
domness of such sequences have been studied extensively and the NIST Suite of
tests [55] for cryptological purposes is widely employed. Information theoretic
methods also are used, for example see Crzegorzewski and Wieczorkowski [20]



also Ryabko and Monarev [58] and references therein for recent work. Covert
timing channels operate by establishing an illegitimate communication channel
between two processes and transmitting information via timing modulation, vi-
olating the underlying system’s security policy. Recent studies have shown the
vulnerability of popular computing environments, such as cloud, to these covert
timing channels. Chen and Venkataramani [18] proposed an algorithm to detect
the possible presence of covert timing channels on shared hardware that use
contention-based patterns for communication. They obtained an event density
histogram to represent the probability distribution of event density and com-
pared this to a Poisson process. We show in §4 how pseudorandom sequences
may be tested using information geometry by using distances in the gamma
manifold to compare maximum likelihood parameters for separation statistics of
sequence elements.

In practical signal comparison situations [29], we obtain statistical data for
an observable that is defined on some finite interval. We shall use as our model
the family of log-gamma probability density functions, Figure ??, defined for
random variable a ∈ (0, 1] in §3.1. The choice of log-gamma model is due to
the fact that it contains a neighbourhood of the uniform distribution, and it
has approximations to Gaussians truncated to domain (0, 1] and with arbitrarily
small variance. The role of these functions in testing we discuss in §5.

Encryption devices may be attacked by electromagnetic sensors that can ex-
tract information on the timing of processes for a chosen range of input data
values. Given some knowledge of the software architecture, timings of operations
typically relate to modular exponentiation steps, associated with the processing
of the binary bits in the encryption key. This is discussed in §6. In practice, clues
to such timing information can be obtained from data on power consumption
using electromagnetic sensors, possibly needing statistical processes to clean the
data of noise. Kocher et al [41] showed the effectiveness of Differential Power
Analysis (DPA) in breaking encryption procedures using correlations between
power consumption and data bit values during processing, claiming that most
smart cards revealed their DES keys using fewer than 15 power traces. A prac-
ticable defence is to obscure the power usage data on timing information by
spurious other processes. Then the effectiveness of such obscuring techniques
can be evaluated using analyses of the distributions associated with time series
from power usage. For example, a time series of power consumption using appro-
priately chosen threshholding and interval windows would yield a barchart and
that would ideally be like that arising from Poisson processes, which for a given
mean are maximally disorderd [36]. Information geometry can be used to mea-
sure differences from the Poisson model, equivalently from its associated expo-
nential distribution—note that Grzegorzewski and Wieczorkowski [20] provided
a detailed analysis of their entropy-based goodness-of-fit test for exponentiality.

Evaluation of cyber security may involve also identifying potentially anoma-
lous behaviour in internet traffic on a network [53,48], thus requiring extraction
of appropriate features from a large data set of event frequency distributions.
sometimes we can fit standard models to the empirical frequency distributions



using maximum likelihood methods as iillustrated for gamma distributions in §3.
In the absence of a model family of distributions for which we have expressions
for the information distances among the memberrs, we can use the symmetrized
Kullback-Leibler relative entropy expression, equation (??), to measure distance
between empirical frequency distributions. Once we have extracted distance mea-
sures between all pairs of datasets we can use multi-dimensional scaling, or di-
mensionality reduction, to extract the three most significant features from the
data set so that all samples can be displayed graphically in a 3-dimensional plot.
The aim is to reveal groupings of data points that correspond to the prominent
characteristics, the methodology is discussed in §7.

Such a dimensionality reduction can reveal anomalous behaviour of a pro-
cess by taking account of the true curved geometry of the data set, rather than
displaying it as uncurved in a Euclidean geometry (cf. [12], Figure 3.2). The
significance is that any non-obvious global topology of frequency connectivity in
the data is revealed by the pattern of mutual separations in the embedding. An
illustration using router traffic on the Abilene network showed how anomalous
behaviour unseen by local methods could be picked up through dimensionality
changes (cf. [12], Figure 3.10). Moreover, in document classification, the infor-
mation metric approach outperformed standard Principal Component Analysis
and Euclidean embeddings [13], and it outperformed traditional approaches to
video indexing and retrieval with real world data [17]. In §7 we outline how au-
tocovariance extraction from time series data may be studied using information
geometry and dimensionality reduction; we described an application to datasets
of stochastic textures from 2-dimensional pixel arrays in [28].

We begin here by outlining the method to compute the Fisher information
metric on a smoothly parametrized family of probability density functions, then
illustrate it with explicit expressions for some important examples.
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