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Abstract. Quantum counterparts of certain classical systems exhibit chaotic spec-
tral statistics of their energy levels; eigenvalues of infinite random matrices model
irregular spectra. Eigenvalue spacings for the Gaussian orthogonal ensemble (GOE)
of infinite random real symmetric matrices admit a gamma distribution approxima-
tion, as do the hermitian unitary (GUE) and quaternionic symplectic (GSE) cases.
Then chaotic and non chaotic cases fit in the information geometric framework of
the manifold of gamma distributions, which has been the subject of recent work on
neighbourhoods of randomness for general stochastic systems.
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1 Introduction

Berry introduced the term quantum chaology in his 1987 Bakerian Lecture [6]
as the study of semiclassical but non-classical behaviour of systems whose
classical motion exhibits chaos. He illustrated it with the statistics of energy
levels, following his earlier work with Tabor [7] and related developments
from the study of a range of systems. In the regular spectrum of a bound
system with n ≥ 2 degrees of freedom and n constants of motion, the en-
ergy levels are labelled by n quantum numbers, but the quantum numbers
of nearby energy levels may be very different. In the case of an irregular
spectrum, such as for an ergodic system where only energy is conserved, we
cannot use quantum number labelling. This prompted the use of energy level
spacing distributions to allow comparisons among different spectra [7]. It was
known, from the work of Porter [16], that the spacings between energy levels
of complex nuclei and atoms with n large are modelled by the spacings of
eigenvalues of random matrices and that the Wigner distribution [19] gives a
very good fit. It turns out that the spacing distributions for generic regular
systems are negative exponential, that is random; but for irregular systems
the distributions are skew and unimodal, at the scale of the mean spacing.
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Mehta [14] provides a detailed discussion of the numerical experiments and
functional approximations to the energy level spacing statistics, Alt et al [1]
compare eigenvalues from numerical analysis and from microwave resonator
experiments. Forrester’s online book [12] gives a wealth of analytic detail on
the mathematics and physics of eigenvalues of infinite random matrices for
the three ensembles of particular interest: Gaussian orthogonal (GOE), uni-
tary (GUE) and symplectic (GSE), being the real, complex and quaternionic
cases, respectively. The review by Deift [9] illustrates how random matrix
theory has significant links to a wide range of mathematical problems in the
theory of functions as well as to mathematical physics. The matrices in these
ensembles are respectively invariant under the appropriate orthogonal, uni-
tary and symmetric transformation groups, and moreover in each case the
joint density function of all independent elements is controlled by the trace
of the matrices and is of form [12]

p(X) = An e
− 1

2TrX
2

(1)

where An is a normalizing factor. Barndorff-Nielsen et al [5] give some back-
ground mathematical statistics on the more general problem of quantum
information and quantum statistical inference, including reference to random
matrices.

Here we show that gamma distributions provide approximations to eigen-
value spacing distributions for the GOE distribution comparable to the Wigner
distribution at the scale of the mean and for the GUE and GSE distributions,
except near the origin. That may be useful in the study of irregular spectra
of more general real systems and their perturbations because the gamma dis-
tribution has a well-understood and tractable information geometry, Arwini
and Dodson [3,4,10], as well as the following important uniqueness property:

Theorem 1 (Hwang and Hu [13]). For independent positive random vari-
ables with a common probability density function f, having independence of
the sample mean and the sample coefficient of variation is equivalent to f
being the gamma distribution.

The non-chaotic case has an exponential distribution of spacings between
energy levels. Now, the sum of n independent identical exponential random
variables follows a gamma distribution and the sum of n independent iden-
tical gamma random variables follows a gamma distribution; moreover, the
product of gamma distributions is well-approximated by a gamma distribu-
tion. Information geometry provides a distinguished information theoretic
metric on the space of distributions and so allows comparison of trajectories
through differing states during perturbations of parameters.

Monte Carlo methods were used by Caër et al. [8] who established the
best fit of GOE, GUE and GSE unit mean distributions, for spacing s > 0,
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using the generalized gamma density which we can put in the form

g(s;β, ω) = a(β, ω) sβ e−b(β,ω)sω for β, ω > 0 (2)

where a(β, ω) =
ω [Γ ((2 + β)/ω)]β+1

[Γ ((1 + β)/ω)]β+2
and b(β, ω) =

[
Γ ((2 + β)/ω)
Γ ((1 + β)/ω)

]ω
.

Then the best fits of (2) had the parameter values shown in Table 1 and were
accurate to within ∼ 0.1% of the true distributions from Forrester [12]. Ob-
serve that the exponential distribution is recovered by the choice g(s; 0, 1) =
e−s. These distributions are shown in Figure 1 along with corresponding fits
of the gamma distribution. More details of the study reported here and of the
differential geometry of manifolds of probability density functions in appli-
cation to near-random and other scenarios will be found in the forthcoming
book Arwini and Dodson [3].

Ensemble β ω Variance

GOE 1 1.886 0.2856
GUE 2 1.973 0.1868
GSE 4 2.007 0.1100

Table 1. The best fit from Caër et al. [8] of GOE, GUE and GSE unit mean
distributions, for eigenvalue spacing s > 0, using the generalized gamma density.

2 Eigenvalues of Random Matrices

The mean spacing between eigenvalues of infinite symmetric real random
matrices, the real Gaussian Orthogonal Ensemble (GOE), is bounded and
therefore it is convenient to normalize the distribution to have unit mean;
the same is true for the complex unitary (GUE) and quaternionic symplec-
tic (GSE) cases. Wigner [17–19] had already surmised that the cumulative
probability distribution function at the scale of the mean spacing should be
of the form:

W (s) = 1− e−πs
2

4 (3)

which has unit mean and variance 4−π
π ≈ 0.273 with probability density

function
w(s) =

π

2
s e−

πs2
4 . (4)

Wigner’s surmise gave a good fit with numerical computation of the true
GOE distribution, Mehta [14] Appendix A.15, and with a variety of observed
data from atomic and nuclear systems [19,7,6,14].
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From Mehta [14] p 171, we have bounds on the cumulative probability
distribution function P for the spacings between eigenvalues of infinite sym-
metric real random matrices:

L(s) = 1− e− 1
16π

2s2 ≤ P (s) ≤ U(s) = 1− e− 1
16π

2s2
(

1− π2s2

48

)
. (5)

Here the lower bound L has mean 2√
π
≈ 1.13 and variance 4(4−π)

π2 ≈ 0.348,
and the upper bound U has mean 5

3
√

5
≈ 0.940 and variance 96−25π

9π2 ≈ 0.197.
The probability densities for the bounds (6) are, respectively,

l(s) =
πs

2
e−

πs2
4 , u(s) =

π2s(64− π2s2)
384

e−
1
16π

2s2 . (6)

Probability density functions for gamma distributions with dispersion pa-
rameter κ > 0 and mean κ/ν > 0 for positive random variable s is given by

f(s; ν, κ) = νκ
sκ−1

Γ (κ)
e−sν , for ν, κ > 0 (7)

with variance κ
ν2 . Then the subset having unit mean is given by

f(s;κ, κ) = κκ
sκ−1

Γ (κ)
e−sκ, for κ > 0 (8)

with variance 1
κ . These parameters ν, κ are called natural parameters because

they admit presentation of the family (7) as an exponential family, Amari
and Nagaoka [2], and thereby provide an associated natural affine immersion
in R3, Dodson and Matsuzoe [11]

h : R+ × R+ → R3 :
(
ν
κ

)
7→

 ν
κ

logΓ (κ)− κ log ν

 . (9)

This affine immersion was used by Arwini and Dodson [3,4] to present tubu-
lar neighbourhoods of the 1-dimensional subspace consisting of exponential
distributions (κ = 1), so giving neighbourhoods of random processes. The
maximum entropy case has κ = 1 and corresponds to an underlying Poisson
random event process and so models spacings in the spectra for non-chaotic
systems; for κ > 1 the distributions are skew unimodular. The unit mean
gamma distribution fit to the true GOE distribution from Mehta [14] has
variance ≈ 0.379 and hence κ ≈ 2.42.

In fact, κ is a geodesic coordinate in the Riemannian 2-manifold of gamma
distributions with Fisher information metric; arc length along this coordinate
from κ = a to κ = b is given by∣∣∣∣∣

∫ b

a

√
d2 log(Γ (κ))

dκ2
− 1
κ
dκ

∣∣∣∣∣ . (10)



Quantum chaology and gamma manifold approximations 5

See Arwini and Dodson [3,4] for more details and related properties; also there
can be found information geometry in neighbourhoods of uniform processes
and neighbourhoods of independence for bivariate processes.
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Fig. 1. Probability density functions for the unit mean gamma distributions
(dashed) and generalized gamma distribution (solid) fits to the true variances for
left to right the GOE , GUE and GSE cases. The two types coincide in the random
exponential case, e−s, shown dotted.

3 Deviations

Near the origin, the GOE and Wigner distributions are linear; the unitary en-
semble (GUE) ∼ s2 and the symplectic ensemble (GSM) ∼ s4. At unit mean
the gamma density behaves like sκ−1 near the origin, so linearity would re-
quire κ = 2 with variance 1

κ = 1
2 ; the GOE fitted gamma distribution has

κ ≈ 2.42 and hence variance ≈ 0.379. Figure 1 shows the probability density
functions for the unit mean gamma distributions (dashed) and generalized
gamma distribution (solid) fits to the true variances for left to right the GOE,
GUE and GSE cases; the two types coincide in the random case, which is
exponential, e−s, shown dotted. Figure 2 shows gamma best fits to the true
GOE, GUE and GSE cases, as points on the affine immersion in R3 of the 2-
manifold of gamma distributions, cf. [3,11]. The information metric provides
information distances on the gamma manifold and so could be used for com-
parison of real data on eigenvalue spacings if fitted to gamma distributions;
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Fig. 2. The unit mean gamma distributions corresponding to the random (non-
chaotic) case, κ = ν = 1 and those with exponent κ = ν = 2.420, 4.247, 9.606 for
the best fits to the true variances of the spacing distributions for the GOE, GUE and
GSE cases, as points on the affine immersion in R3 of the 2-manifold of gamma
distributions.

that may allow identification of qualitative properties and represent trajecto-
ries during structural changes of systems. Figure 3 shows with unit mean the
probability distribution for spacings among the first 2,001,052 zeros from the
tabulation of Odlyzko [15] (large points), that for the true GUE distribution
from the tabulation of Mehta [14] Appendix A.15 (medium points) and the
gamma fit to the true GUE (small points), which has κ ≈ 4.247. The grand
mean spacing between zeros from the data was ≈ 0.566, the coefficient of
variation ≈ 0.422 and variance ≈ 0.178.

The effect of location on the statistical data for spacings in the first ten
consecutive blocks of 200,000 zeros of the Riemann zeta function normalized
with unit grand mean and the effect of sample size were investigated in Ar-
wini and Dodson [3]. For gamma distributions we expect the coefficient of
variation to be independent of sample size and location, by Theorem 1 and
this was approximately the case.
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Fig. 3. Probability plot with unit mean for the spacings between the first 2,001,052
zeros of the Riemann zeta function from the tabulation of Odlyzko [15] (large
points), that for the true GUE distribution from the tabulation of Mehta [14] Ap-
pendix A.15 (medium points) and the gamma fit to the true GUE (small points).

4 Conclusion

The gamma distribution provides approximations to the true distributions for
the spacings between eigenvalues of infinite random matrices for the GOE,
GUE and the GSE cases. However, it is clear that gamma distributions do not
precisely model the analytic systems discussed here, and do not give correct
asymptotic behaviour at the origin, as is evident from the results of Caër
et al. [8] who obtained excellent approximations for GOE, GUE and GSE
distributions using the generalized gamma distribution (2). The differences
may be seen in Figure 1 which shows the unit mean distributions for gamma
(dashed) and generalized gamma (solid) fits to the true variances for the
Poisson, GOE, GUE and GSE ensembles. Unfortunately, the generalized
gamma distributions do not have a tractable information geometry and so
some features of the gamma distribution approximations may be useful in
studies of qualitative generic properties in applications to data from real
systems. It would be interesting to investigate the extent to which data
from real atomic and nuclear systems has generally the qualitative property
that the sample coefficient of variation is independent of the mean. That, by
Theorem 1, is an information-theoretic distinguishing property of the gamma
distribution.
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8.G. Le Caër, C. Male and R. Delannay. Nearest-neighbour spacing distributions

of the β-Hermite ensemble of random matrices. Physica A (2007) 190-208. Cf.
also their Erratum: Physica A 387 (2008) 1713.

9.P. Deift. Some open problems in random matrix theory and the theory of inte-
grable systems. Preprint, arXiv:arXiv:0712.0849v1 6 December 2007.

10.C.T.J. Dodson. Quantifying galactic clustering and departures from random-
ness of the inter-galactic void probablity function using information geometry.
http://arxiv.org/abs/astro-ph/0608511 (2006).

11.C.T.J. Dodson and Hiroshi Matsuzoe. An affine embedding of the gamma man-
ifold. InterStat, January 2002, 2 (2002) 1-6.

12.P. J. Forrester, Log-Gases and Random Matrices, Chapter 1 Gaussian matrix
ensembles. Book manuscript, 2007
http://www.ms.unimelb.edu.au/~matpjf/matpjf.html

13.T-Y. Hwang and C-Y. Hu. On a characterization of the gamma distribution:
The independence of the sample mean and the sample coefficient of variation.
Annals Inst. Statist. Math. 51, 4 (1999) 749-753.

14.Madan Lal Mehta. Random Matrices 3rd Edition, Academic Press, London
2004.

15.A. Odlyzko. Tables of zeros of the Riemann zeta function.
http://www.dtc.umn.edu:80/~odlyzko/zeta_tables/index.html

16.C.F. Porter. Statistical Theory of Spectra: Fluctuations Edition, Aca-
demic Press, London 1965.

17.E.P. Wigner. Characteristic vectors of bordered matrices with infinite dimen-
sions. Annals of Mathematics 62, 3 (1955) 548-564.

18.E.P. Wigner. On the distribution of the roots of certain symmetric matrices.
Annals of Mathematics 67, 2 (1958) 325-327.

19.E.P. Wigner. Random matrices in physics. SIAM Review 9, 1 (1967) 1-23.


