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Abstract

The polygons arising from a planar Poisson line process have an exponential
distribution of their side lengths and are known to be more regular as their area,
perimeter or number of sides increase. Local regions with higher line density have
smaller polygon side lengths and conversely. Numerical analysis of computer gen-
erated Poisson line processes shows that when pairs of adjacent polygon sides
(x, y) are sorted such that x ≤ y they are correlated with ρ ≈ 0.616 as compared
to ρ = 1/

√
5 ≈ 0.447 for independent sorted exponential (x, y) pairs. This correla-

tion is consistent with the observed regularity of polygons in realizations of planar
Poisson line processes.
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1 Introduction

Random lines with uniformly distributed orientation, generated from a Poisson planar
point process, partition the plane into random polygons and much is known about such
processes. The lengths of polygon sides follows an exponential distribution, each line
carrying a Poisson process of intersections with other lines. Miles [1, 2] showed that
the expected number of sides per polygon is 4, the variance of the number of sides per
polygon is (π2 − 8)/2 and the perimeter of n-gons has a χ2 distribution with 2(n− 2)
degrees of freedom. This means that perimeters of n-gons have equivalently a gamma
distribution with dispersion parameter (n − 2); in particular, for n = 3 the perimeter
of triangles coincides with an exponential distribution.

Miles showed also that the fraction of polygons that are triangles is

p3 = (2− π2

6
) ≈ 0.355.
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Tanner [3] derived the fraction of quadrilaterals as

p4 =
1
3
− 7π2

36
+ 4

∫ π/2

0
x2 cotx dx ≈ 0.381.

The fractions pn of polygons with n > 4 sides is not known analytically, though Stoyan
et al. [4] p325 provide numerical estimates collected from Monte Carlo methods:

p5 ≈ 0.192, p6 ≈ 0.059, p7 ≈ 0.013, p8 ≈ 0.002.

Realizations of isotropic random lines from simulations tend to yield random poly-
gons that appear generally more ‘roundish’, nearly regular, rather than irregular in
shape and this is reported also by Corte and Lloyd [5] for fibre networks made using
laboratory and commercial filtration processes. See Miles [6] and Kovalenko [7] for
proofs that this regularity is in fact a limiting property for random polygons as their
area, perimeter or number of sides become large.

Such regularity suggests that the length of adjacent polygon sides is to some extent
correlated, simply as a result of the random clustering of Poisson point processes.
Indeed, first inspection of graphical representations of random isotropic homogeneous
line processes reveals that denser regions tend to have shorter polygon sides than less
dense regions. Product models for polygon areas exist, but they assume the length of
adjacent polygon sides to be independent [5, 8]. Such models might be extended to
account for correlation of the constituent variables, by applying a bivariate exponential
or bivariate gamma distribution to represent polygon side lengths; we shall address
this elsewhere. Here we report results from a Monte Carlo method to determine the
correlation coefficient for lengths of adjacent polygon sides and this may be useful in
guiding analytic models or in characterising other clustered spatial processes.

2 Equivalent ellipse models

We can exploit the result that the mean number of sides per polygon is 4 to represent
the distribution of random polygons with exponentially distributed side lengths by
a distribution of random rectangles. Such an approach has yielded results that agree
with experiments in a range of practical cases [8, 9, 10]. Identify each random rectangle
with an equivalent ellipse of the same area, with minor and major axes the random
variables x, y. The simplest model gives x an exponential distribution and y, which
cannot be less than x, the distribution of x + z where z is an independent random
variable with exponential distribution. It is easy to show that in this case we have
correlation coefficient for y on x given in terms of the mean values x̄, z̄ by

ρ =
1√

1 + (z̄/x̄)2
. (1)
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In particular, we note that if z̄ = x̄ then ρ = 1√
2
≈ 0.707, if z̄ = 2x̄ then ρ = 1√

5
≈ 0.447

and if z̄ = 3x̄ then ρ = 1√
10
≈ 0.316.

This is in fact a special case of the bivariate gamma model given by the McKay
bivariate gamma distribution for correlated 0 < x < y which has joint probability
density,

m(x, y) =
( α1
σ12

)
(α1+α2)

2 xα1−1(y − x)α2−1e
−

√
α1
σ12

y

Γ(α1)Γ(α2)
, (2)

with parameters α1, σ12, α2 > 0. The marginal probability densities of x and y are
univariate gamma distributions with,

x̄ =
√
α1 σ12 (3)

ȳ = (α1 + α2)
√
σ12

α1
. (4)

The correlation coefficient between x and y is given by,

ρ =
√

α1

α1 + α2
. (5)

Since in our model we have y − x = z, the case of marginal exponential distributions
for x and z is given by α1 = α2 = 1. Then it follows that ρ = 1√

2
, as in Equation 1 for

z̄ = x̄.

3 Sorted exponential model

We derive next the correlation of independent, but sorted, pairs of exponentially dis-
tributed variables as a reference against which the outcomes of numerical procedures
in the sequel may be compared. We seek to estimate the correlation coefficient ρ,
between the random variables x, y drawn from an exponential distribution with unit
mean with the ordering x ≤ y. We start with pairs of randomly chosen numbers from
the exponential distribution; hence the mean value of the product of these pairs is 1.
Then convert each pair {xi, yi} into an ordered pair (xi, yi) such that xi ≤ yi and create
now two distributions, one for the first member x and one for the second member y.
Intuitively, we take any yi < xi from the source distribution of y and add them to
source distribution of x; also we take any xi > yi from the source distribution of x
and add these to the source distribution of y. Note that the mean product of pairs
xy = 1 unaltered; however, the ordered pairs are no longer independent. This yields
the probability density function for x

g≤(x) =
1
2
e−2x so x̄ =

1
2

and var(x) =
1
4
. (6)
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Also, the probability density function for y is

g≥(y) = 2 e−2 y(1− e−y) so ȳ =
3
2

and var(y) =
5
4
. (7)

It follows that

ρ =
x y − x̄ ȳ√
var(x) var(y)

=
1√
5
. (8)

4 Simulated random polygons

We expect a consequence of the clustering of crossings in Poisson line processes to
be that pairs (x, y) representing adjacent sides of polygons cannot be considered as
independent. To probe the correlation between the lengths of adjacent polygon sides,
we have written Mathematica code that extracts pairs (x, y) representing the lengths
of the adjacent sides of polygons arising from a Poisson line process in a unit square.

The code solves the equations of lines drawn at random within the unit square to
generate the coordinates of all crossings that occur among them. Coordinates of each
crossing are identified by the lines that generate it, allowing the coordinates of the
adjacent crossings on these lines to be extracted; from these the lengths of adjacent
pairs of polygon sides are calculated.

Note that we consider only pairs of polygon sides bounded entirely by the unit
square. Where either of a pair of adjacent polygon sides cross the sides of the unit
square, these are discounted from the analysis. Importantly, discarding these polygon
sides from our analysis had no significant influence on the distribution of polygon
sides, which was exponential, as expected. Given this, we can be confident that any
difference between the correlation computed from our simulation and that calculated
for independent polygon sides is an intrinsic feature of the network structure and not
an artefact arising from the way the problem has been encoded within the software.

Networks with an increasing number of lines per unit area were generated using 10
random seeds, permitting the correlation to be tracked as a function of process intensity.
For processes of 1000 lines in the unit square we calculate the correlation between
more than a million pairs of adjacent polygon sides and observe a correlation of ρ =
0.616±0.001. We observe the same correlation in networks of 500 lines with a confidence
interval varying only in the fourth decimal place. Note also that whereas the correlation
for individual line processes may exceed this value at low process intensities, the mean
correlation observed over our 10 cases was always less than 0.616 for process intensities
less than 500 lines in the unit square. It is interesting that for process of 20 or more
lines per unit area, the observed correlation was always greater than the value ρ = 1√

5
≈

0.447 found in Equation 8 and ρ increases rapidly towards its limiting value 0.616 with
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increasing intensity. For more discussion of the modelling of stochastic fibrous networks
see the recent books Arwini and Dodson [9] and Sampson [10].
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