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Abstract

Dimensionality reduction helps to identify small numbers of
essential features of stochastic fibre networks for classification
of image pixel density datasets from experimental radiographic
measurements of commercial samples and simulations.

Typical commercial macro-fibre networks use finite length fibres
suspended in a fluid from which they are continuously
deposited onto a moving bed to make a continuous web; the
fibres can cluster to differing degrees, primarily depending on
the fluid turbulence, fibre dimensions and flexibility.

Here we use information geometry of trivariate Gaussian spatial
distributions of pixel density among first and second neighbours
to reveal features related to sizes and density of fibre clusters.



Introduction

Much analytic work has been done on modelling of the
statistical geometry of stochastic fibre networks and their
behaviour in regard to strength, fluid ingress or transfer [1, 5, 7].
Using complete sampling by square cells, their areal density
distribution is typically well represented by a log-gamma or a
(truncated) Gaussian distribution of variance that decreases
monotonically with increasing cell size; the rate of decay is
dependent on fibre and fibre cluster dimensions. Clustering of
fibres is well-approximated by Poisson processes of Poisson
clusters of differing density and size.
A Poisson fibre network is a standard reference structure for
any given size distribution of fibres; its statistical geometry is
well-understood for finite and infinite fibres.



Figure : 1. Electron micrographs of four stochastic fibrous materials.
Top left: Nonwoven carbon fibre mat; Top right: glass fibre filter;
Bottom left: electrospun nylon nanofibrous network (Courtesy S.J.
Eichhorn and D.J. Scurr); Bottom right: paper using wood cellulose
fibres—typically flat ribbonlike, of length 1 to 2mm and width 0.02 to
0.03mm.



Figure : 2. Areal density radiographs of three paper networks made
from natural wood cellulose fibres, of order 1mm in length, with
constant mean density but different distributions of fibres. Each
image represents a square region of side length 5 cm; darker regions
correspond to higher coverage. The left image is similar to that
expected for a Poisson process of the same fibres, so typical real
samples exhibit clustering of fibres.



Spatial statistics
We use information geometry of trivariate Gaussian spatial
distributions of pixel density with covariances among first and
second neighbours to reveal features related to sizes and
density of fibre clusters, which could arise in one, two or three
dimensions—the graphic shows a grey level barcode for the
ordered sequence of the 20 amino acids in a yeast genome, a
1-dimensional stochastic texture.

Saccharomyces CerevisiaeAmino Acids SC1

For isotropic spatial processes, which we consider here, the
variables are means over shells of first and second neighbours,
respectively, which share the population mean with the central
pixel. For anisotropic networks the neighbour groups would be
split into more, orthogonal, new variables to pick up the spatial
anisotropy in the available spatial directions.



Typical sample data

Figure : 3. Trivariate distribution of areal density values for a typical
newsprint sample. Left: source radiograph; centre: histogram of pixel
densities β̃i , average of first neighbours β̃1,i and second neighbours
β̃2,i ; right: 3D scatter plot of β̃i , β̃1,i and β̃2,i .



Information geodesic distances between
multivariate Gaussians

What we know analytically is the geodesic distance between
two multivariate Gaussians, f A, f B, of the same number n of
variables in two particular cases [2]:

Dµ(f A, f B) when they have a common mean µ but different
covariances ΣA,ΣB and
DΣ(f A, f B) when they have a common covariance Σ but
different means µA, µB.

The general case is not known analytically but for the purposes
of studying the stochastic textures arising from areal density
arrays of samples of stochastic fibre networks, a satisfactorily
discriminating approximation is

D(f A, f B) ≈ Dµ(f A, f B) + DΣ(f A, f B).



Information geodesic distance between
multivariate Gaussians [2]

(1). µA 6= µB,ΣA = ΣB = Σ : f A = (n, µA,Σ), f B = (n, µB,Σ)

Dµ(f A, f B) =

√(
µA − µB

)T · Σ−1 ·
(
µA − µB

)
. (1)

(2). µA = µB = µ,ΣA 6= ΣB : f A = (n, µ,ΣA), f B = (n, µ,ΣB)

DΣ(f A, f B) =

√√√√1
2

n∑
j=1

log2(λj), (2)

with {λj} = Eig(ΣA−1/2 · ΣB · ΣA−1/2
).



From the form of DΣ(f A, f B) in (2) it may be seen that an
approximate monotonic relationship arises with a more easily
computed symmetrized log-trace function given by
∆Σ(f A, f B) =√

log
(

1
2n

(
Tr(ΣA−1/2 · ΣB · ΣA−1/2

) + Tr(ΣB−1/2 · ΣA · ΣB−1/2
)
))

.

(3)

This is illustrated by the plot of DΣ(f A, f B) from equation (2) on
∆Σ(f A, f B) from equation (3) in Figure 4 for 185 trivariate
Gaussian covariance matrices.

For comparing relative proximity, this is a better measure near
zero than the symmetrized Kullback-Leibler distance [6] in
those multivariate Gaussian cases so far tested and may be
quicker for handling large batch processes.
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Figure : 4. Plot of DΣ(f A, f B) from (2) on ∆Σ(f A, f B) from (3) for 185
trivariate Gaussian covariance matrices.



Dimensionality reduction for data sets
1. Obtain mutual ‘information distances’ D(i , j) among the

members of the data set of textures X1,X2, ..,XN each with
250×250 pixel density values.

2. The array of N × N differences D(i , j) is a symmetric
positive definite matrix with zero diagonal. This is
centralized by subtracting row and column means and then
adding back the grand mean to give CD(i , j).

3. The centralized matrix CD(i , j) is again symmetric positive
definite with diagonal zero. We compute its N eigenvalues
ECD(i), which are necessarily real, and find the N
corresponding N-dimensional eigenvectors VCD(i).

4. Make a 3× 3 diagonal matrix A of the first three
eigenvalues of largest absolute magnitude and a 3× N
matrix B of the corresponding eigenvectors. The matrix
product A · B yields a 3× N matrix and its transpose is an
N × 3 matrix T , which gives us N coordinate values
(xi , yi , zi) to embed the N samples in 3-space.
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Figure : 5. DΣ(f A, f B) as a cubic-smoothed surface (left), contour plot
(right), trivariate Gaussian information distances among 16 datasets
of 1mm pixel density differences between a Poisson network and
simulated networks from 1mm fibres, same mean density different
clustering. Embedding: subgroups show numbers of fibres in clusters
and cluster densities.
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Figure : 6. DΣ(f A, f B) as a cubic-smoothed surface (left), contour plot
(right), for trivariate Gaussian information distances among 16
datasets of 1mm pixel density arrays for simulated networks made
from 1mm fibres, each network with the same mean density but with
different clustering. Embedding: subgroups show numbers of fibres in
clusters and cluster densities; the solitary point is an unclustered
Poisson network.
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Figure : 7. DΣ(f A, f B) as a cubic-smoothed surface (left), and as a
contour plot (right), for trivariate Gaussian information distances
among 16 simulated Poisson networks made from 1mm fibres, with
different mean density, using pixels at 1mm scale. Second row:
Embedding of the same Poisson network data, showing the effect of
mean network density.
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Figure : 8. Embedding using 182 trivariate Gaussian distributions for
samples from a data set of radiographs of commercial papers. The
embedding separates different forming methods into subgroups.
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