
Remark. Let a compact set X be either T n or S n. Let B be an algebra of complex-valued 
continuous functions on X, such that log lB-ll = log IA-ll, where A is, respectively, either 
A(T n) or A(sn); where under log IB-II we understand the following set: {~(z I, .... zn)~C(X): 
there exists an invertible /(Z 1 ..... gn) ~B such that logl/I = ~ (z, ..... zn) ). Then either B = A 
or B = A. 

Indeed, under the above assumptions we have ReB~ log IA-II and ReA CloglB-11. By 
the corollary to a lemma from [7] we can c2nclude that ReB~ReA and Re A cReB. Conse- 
quently, ReB = ReA and then B = A or B = A. 
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TANGENT AND FRAME BUNDLE HARMONIC LIFTS 

C. T. J. Dodson*% and M. E. Vazquez-Abal% UDC 517 

For a map f:(M, g) + (N, h) between Riemannian manifolds we study harmonicity in the 
induced tangent and frame bundle diagram 

(FM~ Fg) --,. (M, g) ~ (TM, Tg) 

(FN,, Fh) --~ (N~ h) .-- (7'N, Th). 

with respect to the diagonal lifts of base metrics; here Ff is well-defined if f is a local 
diffeomorphism. In each case the bundle projection is harmonic and has fibers which are 
totally geodesic and hence minimal submanifolds, so we have harmonic fibrations. We prove 
that, when Ff is defined, it is totally geodesic if and only if f is totally geodesic, and if 
f is a local diffeomorphism of flat manifolds then Ff is harmonic whenever f is harmonic. 
This extends to the frame bundle for a number of results of Sanini for the tangent bundle. 
Consideration is given also to another Riemannian structure induced on a frame bundle by a 
linear connection on the base manifold; it gives rise also to a harmonic fibration and for 
this some stability properties are known concerning incompleteness. 

Introduction 

On the tangent bundle TM to a Riemannian m-manifold (M, g) Sasaki [18] introduced a 
natural Riemannian structure Tg, the diagonal lift of g. Mok [15] devised in a similar way 
a Riemannian structure Fg on FM, the principal Gs of linear frames on M. In this 
paper we consider harmonicity and total geodesicity in the bundle diagrams induced by a 
local diffeomorphism f from (M, g) to a Riemannian n-manifold (N, h): 
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(FM, Fg) ~ (M., g) <-- (TM, Tg) 

(FN, Fh) ~ (N, h) ~ (T N, T h). 

In  each  c a s e  t h e  i nduced  m e t r i c s  make o r t h o g o n a l  t h e  h o r i z o n t a l  and v e r t i c a l  d i s t r i b u t i o n s  
i nduced  by t he  L e v i - C i v i t a  c o n n e c t i o n s  7g and V h and we have ha rmonic  Riemannian  s u b m e r s i o n s ,  
w i t h  g e o d e s i c s  p r e s e r v e d  under  p r o j e c t i o n  and h o r i z o n t a l  l i f t i n g .  For  a Riemannian  submer-  
s i o n ,  c o m p l e t e n e s s  of  t h e  t o t a l  space  i m p l i e s  c o m p l e t e n e s s  o f  i t s  f i b e r s  and of  t h e  base  space  
(cf. Hermann [i0], O'Neill [16]). Kowalski [13] studied the curvature of Tg and established 
the result 

V T g R  r g  = O ~ R g " -  O ~ Ar~ r g  = O. 

Thus,  f l a t n e s s  of  (M, g) l i f t s  t o  f l a t n e s s  o f  (TM, Tg) and n o n f l a t n e s s  o f  (M, g) t i f t s  t o  
l a c k  o f  l o c a l  symmetry in (TM, Tg) .  Moreover ,  f rom Fe rnandez  and de Leon [ 8 ] ,  we deduce  t h a t  
n o n f l a t n e s s  o f  (M, g) f o r c e s  n o n c o n s t a n c y  of  t h e  s c a l a r  c u r v a t u r e  of  (TM, Tg) ,  and unbounded-  
nes s  o f  i t s  s e c t i o n a l  c u r v a t u r e  f o l l o w s  from Aso [ 1 ] .  

From Mok [15] we have t he  a n a l o g o u s  s i t u a t i o n  

~ F g R V g  = O------> R g = O ~ R gg = O. 

Cordero and de Leon [4] proved that (FM, Fg) is flat if its sectional curvature is bounded 
or if it has the same constant scalar curvature as (M, g), or if it is an Einstein manifold. 

Another Riemannian structure is available on the frame bundle of any manifold with a 
linear connection; it also yields a harmonic Riemannian submersion onto the base and has 
totally geodesic fibers. Recent studies of this space by Canarutto and Dodson [3] and Dei 
Riego and Dodson [5] may be relevant to questions of stability of harmonicity. 

The coordinate expression for the second fundamental form of f:(M, g) + (N, h) is given 
by 

[V g dl]~ s = 0~51 v - -  gr~)od; + " r~o fOj l  ~, 
and its trace T(f) appears locally as 

(/F = g~J ( vg dl)~. 

The map f i s  c a l l e d  ha rmonic  i f  ~ ( f )  = 0 ( c f .  [ 7 ] ) .  

The Sasaki metric Tg has components diag (gij, gij) with respect to thehorizontal-vertical 
splitting induced by vg. The second fundamental-form of ~TM:TM § M has coordinate expression 

I gn~ ~ 0 ---~- j 
(v~ dav~) ~ 

- + 0 

g k  
where Ri~ j d e n o t e s  components  of  R g, t he  c u r v a t u r e  of  V g. C l e a r l y  Z(~TM) = 0 and ~TM i s  
totally geodesic if and only if (M, g) is flat. When M is compact, the energy of f is defined 
to be the integral of (i/2)[dfii; then f is known to be harmonic if and only if it is an ex- 
tremal for this energy. 

Tangent Bundle 

Sanini [12] established the following results. 

(a) Tf is totally geodesic ~ f is totally geodesic. 

If f is harmonic, then (b) Tf is harmonic e-- 

div (Vhdf) = 0 
Rh(Vhdf (X,ei),dfX)df c i = 0 
for all vector fields X on M and orthonormal frames (ci) , 
R h being the curvature of V h. 

Hence, if f is a map between flat manifolds, then f harmonic ~T] harmonic. 

(c) If M is compact, then Tf harmonic 3/ totally geodesic, o 
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Now consider the tangent bundle diagram induced by f 

(TM, Tg) ~ (TN, Th) 

~M, g) I__+ (N, h). 

By d i r e c t  c o m p u t a t i o n  we f i n d  t h a t  ~TM i s  a harmonic  Riemannian  s u b m e r s i o n  and so by Smith 
[13] we have the following: 

THEOREM i. In the diagram, the diagonal map 

~TN o T] = ] o ~TM 

i s  harmonic  i f  and o n l y  i f  f i s  ha rmon ic .  [] 

COROLLARY 1. Suppose t h a t  (N, h)  i s  R and (TM, Tg) i s  c o m p l e t e  w i t h  n o n n e g a t i v e  s e c -  
t i o n a l  c u r v a t u r e .  Then, f o r  compact  (M, g) t he  r e a l  f u n c t i o n  

] o  g T M :  TM:-+R, 
i s  c o n s t a n t  i f  i t  has bounded e n e r g y .  

P r o o f .  This  i s  a s p e c i a l  c a s e  of  a theorem of  Greene and Wu [ 9 ] .  D 

COROLLARY 2. Suppose t h a t  (N, h) i s  compact  w i th  n o n p o s i t i v e  s e c t i o n a l  c u r v a t u r e  and 
(TM, Tg) i s  c o m p l e t e  w i t h  n o n n e g a t i v e  R i c c i  c u r v a t u r e .  Then, f o r  compact  (M, g ) ,  t he  map 

/ o  gTM :.TM--+N, 
i s  c o n s t a n t  i f  i t  has  bounded e n e r g y .  

P r o o f .  Th i s  f o l l o w s  from a r e s u l t  of  Schoen and Yau [19 ] .  o 

COROLLARY 3. ~TN is totally geodesic if and only if the horizontal distribution of TN is 
integrable; then f o ~TM is harmonic if Tf is harmonic. 

Proof. This follows from a result of Vilms [23] because ~TM is a Riemannian submersion 
with totally geodesic fibers. [] 

COROLLARY 4. In (TN, Th), if either the scalar curvature is constant or the sectional 
curvature is bounded, then ~TN is totally geodesic, and so f o ~TM is harmonic if Tf is har- 
monic. 

Proof. Each property is sufficient to ensure flatness of (N, h) by theorems of Fernandez 
and de Leon [8] and Aso [I], respectively; then ~TN is totally geodesic and we apply Corollary 
3. 

Note that, since VTM is a Riemannian submersion, if (TM, Tg) is complete, then so is 
(M, g). 

Frame Bundle 

The metric Fg introduced by Mok [15] on the frame bundle FM of a Riemannian m-manifold 
(M, g) resembles that of Sasaki [18] for the tangent bundle. For it is a diagonal lift making 
orthogonal the horizontal and vertical distributions induced by the Levi-Civita connection 
vg on the base and it makes the projection VFM a harmonic Riemannian submersion, actually a 
harmonic fibration because its fibers are minimal submanifolds. 

We follow Mok [15] and express the metric Fg with respect to the adapted coframe for TFM 

(dx ~ ,grhvj  d h h -~ j~dx  j §  X~) (dx ~, = 6X~), 

where c o o r d i n a t e s  (x i )  on M i n d u c e  c o o r d i n a t e s  (x i ,  X~) on FM. Then we o b t a i n ,  l o c a l l y ,  

F g =  g~jdx ' | dxJ + ~g~j6X~ | ~Xg. 

I t  f o l l o w s  t h a t  t h e  second  f u n d a m e n t a l  form of  ~TM has c o o r d i n a t e  e x p r e s s i o n  

o _.Lg~k ~z] 
(VVgd~vM)~ [__+gR~liZ~-- 2 0 "'il]~a] 

and hence  ~(~FM) = 0; a g a i n ,  ~FM i s  t o t a l l y  g e o d e s i c  i f  and o n l y  i f  (M, g) i s  f l a t .  
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A direct computation establishes that ~FM is a harmonic Riemannian submersion with to- 
tally geodesic fibers. Less directly, each fiber is an autoparallel submanifold by Mok [15] 
and therefore totally geodesic and minimal [12]. Observe that any fibered manifold map f: 
M + N, in other words, a surjective submersion, induces a map from FM to a quotient bundle 
of FN. However, a well-defined map Ff:FM § FN exists when f is a local diffeomorphism. A 
further application of Smith [21] yields the following. 

THEOREM 2. In the diagram 

(FM, Fg) F~ (FN, Fh) 

1 (M,. g) , (N, h). 

let f be a local diffeomorphism; then the diagonal map 

~FNoT]: /O~FM 
i s  h a r m o n i c  i f  and  o n l y  i f  f i s  h a r m o n i c .  [] 

COROLLARY 1. When F f  i s  h a r m o n i c ,  t h e n  a n y  one  o f  t h e  f o l l o w i n g  c o n d i t i o n s  i s  s u f f i -  
c i e n t  t o  e n s u r e  h a r m o n i c i t y  o f  f :  

(a) (N, h) or (FN, Fh) is flat; 

(b) (FN, Fh) is an Einstein manifold; 

(c) (FN, Fh) has bounded sectional curvature. 

Proof. Suppose that Ff is harmonic. If (N, h) is flat, then ~FN ~ Ff is harmonic; so by 
the theorem, f is harmonic; this establishes (a) since Mok [15] showed that (FN, Fh) is flat 
if and only if (N, h) is flat. 

For (b), we observe that Cordero and de Leon [4] proved that (FN, Fh) is an Einstein 
manifold only if (N, h) is flat, so the result follows from (a). 

For (c), if the sectional curvature of (FN, Fh) is bounded, then (FN, Fh) is flat [4.] 
and we apply (a). [] 

As before, completeness of (M, g) is implied by completeness of (FM, Fg). For compact 
(M, g) the energy integral is defined (cf. [7]) and we have the following two applications. 

COROLLARY 2 (again using Greene and Wu [9]). Suppose that (N, h) is R and (FM, Fg) is 
complete with nonnegative sectional curvature. Then, 

/~ FM--+R;  

is constant if it has bounded energy. D 

COROLLARY 3 (again using Schoen and Yau [19] Suppose that (N, h) is compact with 
nonpositive sectional curvature and (FM, Fg) is complete with nonnegative Ricci curvature. 
Then 

]O~FM: FM-+N, 

i s  c o n s t a n t  i f  i t  h a s  b o u n d e d  e n e r g y .  D 

I n  t h e  p r e s e n c e  o f  t h e  R i e m a n n i a n  s t r u c t u r e  g on  M, t h e  f r a m e  b u n d l e  FM i s  r e d u c i b l e  
t o  t h e  o r t h o n o r m a l  b u n d l e  OM w i t h  s t r u c t u r e  g r o u p  O(m) .  Mok [ 1 5 ]  h a s  s t u d i e d  t h e  g e o m e t r y  
o f  OM a s  a R i e m a n n i a n  s u b m a n i f o l d  o f  (FM, Y g ) .  He s h o w e d  t h a t  t h e  c o m p l e t e  ( i . e . ,  n a t u r a l )  
l i f t  t o  FM o f  an  i n f i n i t e s i m a l  i s o m e t r y  ( i . e . ,  K i l l i n g  v e c t o r  f i e l d )  on (M, g )  i n d u c e s  an  
infinitesimal isometry on OM. 

As might be expected, the lifts Tf and Ff for a local diffeomorphism f:(M, g) + (N, h) 
are related. Moreover the Sasaki and Mok lifts of the Riemannian structures have common 
features and we obtain the following result for harmonic maps, extending Sanini's [17] theo- 
rem to the frame bundle. 

THEOREM 3. Let f:(M, g) + (N, h) be a local diffeomorphism; then: 

(a) Ff:(FM, Fg) § (FN, Fh) is totally geodesic if and only if f is totally geodesic; 

(b) Ff is harmonic if and only if Tf is harmonic; 
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(c) if (M, g) and (N, h) are flat, then f harmonic oF] harmonic; 

(d) if M is compact, then Ff harmonic ~ f totally geodesic. 

Proof. We show that Ff is totally geodesic if and only if Tf is totally geodesic and 
then use Sanini [17]. 

(a) The second fundamental form for Ff has components 

R(m+mg•247 R(n+n')• [[~ dFf] ~, [V dFl]v] ~ X 

where V i s  the  L e v i - C i v i t a  c o n n e c t i o n  o f  Fg, and m = n. These have t he  f o l l o w i n g  appearance 

d--) = (V dl) , (q,)o (~ 
a t J L ((Bj~)a X~) 0 

(D~i)a X v (V dr)# i 6c~ + (6~i)ab X~zX v 
(V dF/)~ = ((g~,) b~ + (F~,)~b --~--w,x'~xb~t 0 

for certain arrays, A, B, C, D, E, F, G which depend on f and the curvatures of (M, g) and 
(N, h) .  

S i m i l a r l y ,  f o r  Tf we have the  components  

((V dT[) ~, (V dT/) ~+~) ~ R 2"• • R s"xs", 

where ~ i s  t he  L e v i - C i v i t a  connec t •  of  Tg, and t h e y  a r e  summarized by 

r~ + (v (q,)o Y~ 1 
(v dr/)' = L ro o J ' 

[ (D")a F~ (V d/)'~ + (OV'0ab r=rb ] 
(V dT/f+" = (e~) + (v~])ob r~ b 

E v i d e n t l y ,  the  c o o r d i n a t e s  X a in FM run t h r o u g h  a l l  n o n s i n g u l a r  (n • n) m a t r i c e s  and the  
c o o r d i n a t e s  ya in TM run t h r o u g h  R ~. I t  f o l l o w s  from t h e  above e x p r e s s i o n s  t h a t  VdFf = 0 
i f  and o n l y  i f  VdTf = O. 

(b) This  f o l l o w s  from i n s p e c t i o n  Of t h e  above components  s i n c e  Fg and Tg are  d i a g o n a l  
lifts of g. 

(c) If (M, g) and (N, h) are flat, then harmonicity of f implies harmonicity of Tf and 
hence also of Ff when it is defined. 

(d) This follows from (b) and Sanini [17]. [] 

Another quite natural Riemannian structure is available on the frame bundle to any mani- 
fold with a linear connection. This seems to have been used first, independently, by Marathe 
[14] and Schmidt [20] (though O'Neill [16] studied the case for a Riemannian connection). 
For a detailed study of the induced geometry and its application to the study of spacetime 
singularities, see Dodson [6]. Let V be a linear connection with connection form ~V on M and 
denote by 8 the canonical 1-form. Then an induced Riemannian structure, the connection 
metric, is given on FM by 

gv = 0.0 + o r .  Or, 

where denotes the standard inner product on R" and R"". We can express the metric gv with 
respect to the adapted coframe for TFM 

(dx t, v ~" i i .  r,,x~ d~ + aXe) = (dx i, 6X~), 

where coordinates (xJ) on M induce coordinates (x i, X i) on FM and Vrkj are the components of 
the connection V on M. Then we obtain locally 

gv ' gv,l dx i @ dxY+ 6~,~gv,j6X~ Q 6X~, 

where gvii = ~-6, Y~Y~ and Y) = (X~)-'. 

In the present context we are interested in the situation where the linear connection V 
coincides with the Levi-Civita connection V g of a Riemannian structure g on M. Then the 
metric gvg so induced is the connection metric of the metric connection. 
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We use ~ to denote the restriction to OM of the connection metric gvg" Note that if 
Y = (x, b, X, B) is a tangent vector to OM at (x, b), then the splitting of TOM induced by 
vg yields 

y = yH | y v  = (x, b, X ,  - - b r X )  | (z, b, O, B + brX) 

in  an o b v i o u s  m a t r i x  n o t a t i o n ,  r r e p r e s e n t i n g  t h e  C h r i s t o f f e l  symbol s .  

0 (Y) = b- IX in R TM 

and 

Then 

~vg (Y) = (B + bFX) b -1 in R m'. 

THEOREM 4. If (M, g) is a Riemannian m-manifold, then 

(i) g = 0.0 + ~v~'~v~ is uniformly equivalent to every ~ = 8,0 ~ ~v~ @ ~vg, where, u ~ 

are any other inner products on R "~, R*9 ~ . 

(ii) O(m) acts uniformly continuously on (OM, ~). 

(iii) (OM, ~) is complete if and only if (M, g) is complete. 

(iv) If (OM, ~) is incomplete, then its completion OM quotients by O(m) yield a homeo- 
morph of the completion M of (M, g). 

(v) The bundle (OM, ~) ~0+M (M, g) is a harmonic submersion but not a Riemannian sub- 
mersion. 

Proof. Parts (i)-(iv) are proved in [6], where results are given also on completion of 
associated bundles. Part (v) follows from a direct calculation, b ~ 

Observe that for this submersion but completeness and incompleteness lift from the base 
manifold. 

O'Neill [16] has computed the sectional curvature of (OM, ~) and has given a number of 
useful formulas for general submersions. 

THEOREM 5. Let A:O(m) § O(n) be an epimorphism, and suppose that #:OM + ON is an A-equi- 
vriant orthonormal bundle morphism [i.e., ~(~'y) = A(~).~(y)] over Riemannian manifolds (M, g), 
(N, h). Then 

(i) Trace Vgd~ = ~(~) is equivariant. 

(ii) ~ is harmonic if and only if it is an extremal of the energy with respect to all 
compactly supported equivariant variations. 

Proof. It can be seen that the action of O(m) on OM is isometric, and then the result 
follows as a special case of a theorem of Smith [21]. [] 

See Eells and Lemaire [7, pp. 17-18] for further discussion and a_summary of Smith's 
necessary and sufficient conditions for the induced map on quotients, #:M + N, to be har- 
monic. In particular, we can deduce the following. 

COROLLARY. Let f:(M, g) + (N, h) lift to an A-equivariant map Ff:(OM, ~) ~ (ON, h) 
which preserves horizontality and suppose that A:O(m) § O(n) is a Riemannian submersion. 
Then f is harmonic if and only if Ff is harmonic. [] 

We note that, given ~ as in the theorem and a connection in ON, it is always possible 
to induce a connection in OM such that ~ preserves horizontality (and curvature forms) [ii]. 

THEOREM 6. Incompleteness of (FM, gv) is stable under variation of the connection V on 
M. 

Proof. This is formulated precisely and proved in Canarutto and Dodson [3]. 

In particular, it turns out that incompleteness of (FM, gvg) persists into the family 
I t of spaces (FM, gvg ) induced by a 1-parameter family {g'} of metrics conformal to g. Of 

curse, a sufficiently large conformal change can always complete an incomplete Riemannian 
manifold; but this is not true, for example, for geodesically incomplete Lorentzian manifolds 
(cf. Beem [2]). These theorems suggest one way to approach the study of stability of har- 
monicity under variation of the geometry. The basis of the method in Theorem 6 is the canon- 
ical universal connection on a space of connections (cf. [5]). The generality here may allow 
also the formulation of an appropriate generalization of the notion of harmonicity to maps 

907 



between manifolds with connection. For example, each choice of linear connection V on M in- 
duces a Riemannian isometric imbedding of (FM, gv) into the bundle of linear connections on 
M. 
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