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Structural invariance of voids: Pore size distributionStructural invariance of voids: Pore size distribution

• Standard deviation of pore radii 
proportional to the mean:

• Property of the gamma 
distribution

• Measurements in real paper 
dominated by pore height 
distribution (exponential)

• Insensitive to formation
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Structural invarianceStructural invariance of voidsof voids: Pore size distribution: Pore size distribution

• Standard deviation of pore radii 
proportional to the mean:

• Property of the gamma 
distribution

• Measurements in real paper 
dominated by pore height 
distribution (exponential)

• Insensitive to formation

• Polygons tend to be ‘roundish’

• Conjecture, FRS13: correlated 
free-fibre-lengths
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• Variance of local grammage,          , 
of random fibre networks known 
analytically

• Formation number (variance ratio):

• nf vs. inspection zone size (x) `linear’
for x < 4 mm

Structural invariance of mass: Formation numberStructural invariance of mass: Formation number
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Structural invariance of mass: Formation numberStructural invariance of mass: Formation number
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• Variance of local grammage,          , 
of random fibre networks known 
analytically

• Formation number (variance ratio):

• nf vs. inspection zone size (x) `linear’
for x < 4 mm

• Random disk model:
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Objectives and ApproachObjectives and Approach

Objective:

• To explain the seemingly narrow class of 
structures realised in papermaking processes:
pore shape, pore size distribution and mass distribution

Approach:

• Simulation of random and clustered processes of:

• Points, to represent fibre centres

• Infinite lines to generate free-fibre-lengths

• Finite lines, to represent fibres and generate mass 
maps.
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Fibre centreFibre centre statistics:statistics: PoissonPoisson pointspoints

Probability density of distance, r, between fibre centres occurring in a square of 
side, d, is known for the random (Poisson) case (Ghosh, 1951):
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Fibre centre statistics:Fibre centre statistics: NonNon--PoissonPoisson pointspoints

For flocculated and dispersed cases, we use simulation to deposit 50,000 fibre 
centres in a unit square. 

Clustered: Compound Poisson process

• Cluster centres distributed as a 2D Poisson process

• Number of centres per cluster has a Poisson distribution

• Inputs: 
• mean number of centres per cluster
• cluster diameter

Dispersed: Small random perturbation from square lattice



FRS14
16 September 2009

Fibre centres:Fibre centres: Distributions of points and fibresDistributions of points and fibres

Dispersed Random Clustered
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Fibre centres:Fibre centres: Distributions of points and their separationsDistributions of points and their separations

Dispersed Random Clustered
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Random networks: Correlation of adjacent freeRandom networks: Correlation of adjacent free--fibrefibre--lengths?lengths?

• Conjecture, FRS13: adjacent free-fibre-
lengths are correlated, such that 
polygons tend to be ‘roundish’.

• Free-fibre-length distribution is 
exponential. For unit mean
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• To reveal correlation between pairs of free-fibre-lengths, {xi yi}, we must order 
the pairs such that xi ≤ yi
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Correlation of adjacent freeCorrelation of adjacent free--fibrefibre--lengths: Independent pairslengths: Independent pairs
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• First we must obtain the correlation for independent sorted pairs

• Start with a pair of numbers,  {xi, yi}, drawn from the exponential distribution

• Convert each pair into an ordered pair (xi, yi) such that xi ≤ yi

• Two distributions arise, one for x and one for y:
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Correlation of adjacent freeCorrelation of adjacent free--fibrefibre--lengths: Independent pairslengths: Independent pairs

• The correlation ρ is given by

• So for independent pairs ρ ≈ 0.447. We use simulation to obtain ρ for 
stochastic line networks. If the simulation yields ρ > 0.447, then we have 
intrinsic correlation in our networks. 
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Correlation of adjacent freeCorrelation of adjacent free--fibrefibre--lengths: Random networkslengths: Random networks

10 lines 20 lines 50 lines 100 lines

• Simulation solves equations of random lines drawn in a unit square to 
compute coordinates of crossings and polygon sides (free-fibre-lengths)

• Adjacent polygon sides are paired

• Polygon sides crossing boundaries of unit square are discarded

• Correlation of sorted and paired polygon side lengths computed

• Correlation tracked as number of lines increased
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Correlation of adjacent freeCorrelation of adjacent free--fibrefibre--lengths: Random networkslengths: Random networks
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Correlation of adjacent freeCorrelation of adjacent free--fibrefibre--lengths: Oriented & clusteredlengths: Oriented & clustered

• Very small influence of fibre  
orientation using 1-parameter 
cosine distribution
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• Very small influence of clustering. 
Lines pass through clusters of points 
with varying cluster radius, rf, and 
cluster intensity, Ic
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Formation simulatorFormation simulator

• Formation easily visually classified as ‘cloudy’ (large flocs, low floc grammage) 
or ‘grainy’ (small flocs, high floc grammage) 

• Experimentally difficult to vary scale and intensity of flocculation independently

• Simulator generates 4 cm × 4 cm grammage maps where scale and intensity of 
clusters (flocs) can be varied independently

Cloudy Grainy
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Formation simulatorFormation simulator

Inputs: 

• Grammage,

• Fibre properties:

• Length, λ

• Coarseness, δ

• Width, ω

• Mean floc radius, rf

• Floc intensity, 0≤I ≤1

• Expected number of 
fibres per cluster,

β

cn
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Formation simulator for flocculated networksFormation simulator for flocculated networks

Inputs: 

• Grammage,

• Fibre properties:

• Length, λ

• Coarseness, δ

• Width, ω

• Mean floc radius, rf

• Floc intensity, 0≤I ≤1

• Expected number of 
fibres per cluster,

β

cn

Simulation:

• Number of fibres per cluster, nc, is a Poisson 
variable with mean, 

• Mean grammage, G, of each cluster is 
assumed constant (cf. Farnood et al. 1995) 

• Radius of each cluster is 

• nc fibre centres deposited within circles of 
radius r.

• For each fibre, contribution to mass of each 
pixel calculated.
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Formation simulator: Example outputsFormation simulator: Example outputs
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Formation simulator: Random case, fibre length effectFormation simulator: Random case, fibre length effect

• Simulator generated Poisson random networks (nc = 1) for different fibre 
lengths and computed nf
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• Different areas

Formation simulator: Random case, scale sensitivityFormation simulator: Random case, scale sensitivity
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• Sufficient data reliably to compute 
variance only for scales up to about 
10% of imaging area
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Formation simulator: Scale dependence of Formation simulator: Scale dependence of nnff

λ = 1 mm; ω= 20 μm; δ = 2 × 10-7 kg m-1; β = 60 g m-2
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• nf increases with

• inspection zone size
• flocculation intensity, I
• number of fibres per cluster, nc

• Dependence on zone size 
nonlinear

• literature data sparse
• linear regression gives r2>0.9 

on these data
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Formation simulator: Scale dependence of Formation simulator: Scale dependence of nnffFormation simulator: Scale dependence of Formation simulator: Scale dependence of nnff

λ = 1 mm; ω= 20 μm; δ = 2 × 10-7 kg m-1; β = 60 g m-2

• nf increases with

• inspection zone size
• flocculation intensity, I
• number of fibres per cluster, nc

• Dependence on zone size 
nonlinear

• literature data sparse
• linear regression gives r2>0.9 

on these data

• No simple scaling law found, but

• when nc and I are both large, 
nf exhibits similar dependence 
on zone size at small scales
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Analytic approximation of formation number Analytic approximation of formation number nnff

For a Poisson structure of sparse disks with grammage, G, and uniform 
diameter, D, the variance of local grammage for square zones of side x is
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Analytic approximation of formation number Analytic approximation of formation number nnff

λ = 1 mm
λ = 2 mm
λ = 3 mm
λ = 4 mm

2 4 6 8 100

10

20

30

40

50,
f

Zone size, x (mm)

D = 4 mm

2 4 6 8 100

10

20

30

Fo
rm

at
io

n 
nu

m
be

r,
n f

Zone size, x (mm)

D = 3 mm

2 4 6 8 100

4

8

12

Fo
rm

at
io

n 
nu

m
be

r,
n f

Zone size, x (mm)

D = 2 mm



FRS14
16 September 2009

Analytic approximation of formation number Analytic approximation of formation number asymptoticsasymptotics

For large inspection zones

cfx
nxn =

∞→
)(lim

At small inspection zones, the initial slope is
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So the initial slope of a plot of formation number against inspection zone 
size depends on the intensity of flocculation and the asymptotic value 
depends on the expected number of fibres per floc.
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ConclusionsConclusions

• Pores ARE roundish: Natural stochastic clusters, which generate local 
free-fibre-length correlations, overwhelm any effects on pore shape of fibre 
orientation or flocculation.

• Trapped polygon void sizes: Local free-fibre-length correlations force 
coefficient of variation for in-plane pore sizes to be insensitive to 
flocculation and orientation.

• Trapped formation: Variance ratio to random (nf) asymptotic to number 
of fibres per cluster (nc) and convergence rate is intensity of flocculation (I).


