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Abstract

You are unlikely to want your research articles to use coloured text but this
illustrates how it can be done, for example if you want a coloured poster.
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1 Introduction

Zero-Knowledge proofs allow verification of secret-based actions without revealing the
secrets. Goldreich et al. [5] discussed the class of promise problems in which interaction
may give additional information in the context of Statistical Zero-Knowlege. They
invoked two types of difference between distributions: the ‘statistical difference’ and
the ‘entropy difference’ of two random variables. In this context, typically, one of the
distributions is the uniform distribution.

Thus, in the contexts of DPA and SZK tests, it is necessary to compare two nearby
distributions on bounded domains. We describe the following result and discuss appli-
cations.

Proposition 1.1 The family of probability density functions for random variable N ∈
[0, 1] given by

g(N,µ, β) =

1
N

1−β
µ (β

µ
)β (log 1

N
)
β−1

Γ(β)
for µ > 0 and β ≥ 1 (1)

determines a metric space of distributions with the following properties
• it contains the uniform distribution
• it contains approximations to truncated Gaussian distributions
• the difference structure is given by the information-theoretic metric
• as a Riemannian 2-manifold it is an isometric isomorph of the manifold of gamma
distributions.
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3 Proof of Proposition 1.1

3.1 Log-gamma PDFs

By integration, it is easily checked that the family given by equation (1) consists of
probability density functions for the random variable N ∈ [0, 1]; some with central
mean are shown in Figure 1. The limiting densities are given by

lim
β→1+

g(N,µ, β) = g(N,µ, 1) =
1

µ

(
1

N

)1− 1
µ

(2)

lim
µ→1

g(N,µ, 1) = g(N, 1, 1) = 1 . (3)

3.2 Information metric structure

For the log-gamma densities, the Fisher information matrix determines a Riemannian
information metric [1] on the parameter space S = {(µ, β) ∈ (0,∞)× [1,∞)}. Its arc
length function is given by

ds2
S =

∑
ij

gij dx
idxj =

β

µ2
dµ2 +

(
ψ′(β)− 1

β

)
dβ2, (4)

where ψ(β) = Γ′(β)
Γ(β)

is the logarithmic derivative of the gamma function, evaluated at
β.

In fact, (1) arises from the gamma family

f(x, µ, β) =
xβ−1 (β

µ
)β

Γ(β)
e−

V β
µ (5)

for the non-negative random variable x = log 1
N
. It is known that the gamma family

(5) has also the information metric (4) (cf [7]) so the identity map on the space of
coordinates (µ, β) is an isometry of Riemannian manifolds. �

4 Tables

Table 1 lists the number of differentiable structures on spheres.

Here is how to set out a table in LATEX:
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n Sn Rn

1 1 1
2 1 1
3 1 1
4 1 ∞
5 1 1
6 1 1
7 28 1
8 2 1
9 8 1
10 6 1
11 992 1
12 1 1
13 3 1
14 2 1
15 16256 1

Table 1: Numbers of distinct differentiable structures on real n-space and n-spheres

\begin{table}

\begin{center}

\framebox[1.5in]{\begin{tabular}{c | c | c }

$n$ & $\S^n$ & $\R^n$ \\ \hline

1 & 1 & 1 \\

2 & 1 & 1 \\

3 & 1 & 1 \\

4 & 1 & $\infty$ \\

5 & 1 & 1 \\

6 & 1 & 1 \\

7 & 28 & 1 \\

8 & 2 & 1 \\

9 & 8 & 1 \\

10 & 6 & 1 \\

11 & 992 & 1 \\

12 & 1 & 1 \\

13 & 3 & 1 \\

14 & 2 & 1 \\

15 & 16256 & 1 \\

\end{tabular}}

\caption{Numbers of distinct differentiable structures on real $n$-space

and $n$-spheres}

\label{diffstruc}

\end{center}

\end{table}

This allowed us to cross-reference the Table via:
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Figure 1: The log-gamma family of densities with central mean < N >= 1
2

as a surface
and as a contour plot.

~\ref{diffstruc}

5 Graphics

Figure 1 was created by calling in the two pdf graphics files 3dpdf.pdf , contpdf.pdf
placed together in the following picture environment inside a figure environment
with a caption and label:

\begin{figure}

\begin{picture}(300,220)(0,0)

\put(-20,20){\resizebox{20 cm}{!}{\includegraphics{3dpdf}}}

\put(260,30){\resizebox{15 cm}{!}{\includegraphics{contpdf}}}

\put(210,100){$\beta$}

\put(400,25){$N$}

\put(260,200){$\beta$}

\put(90,40){$N$}

\end{picture}

\caption{{\em The log-gamma family of densities with central mean

$<N> \, = \frac{1}{2}$ as a surface and as a contour plot. }}

\label{pdf}

\end{figure}
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