HELM Resources : Please find the section(s) you are interested in from the list below.

1: Basic Algebra

1.1 Mathematical notation and symbols
1.2 Indices
1.3 Simplification and Factorisation
1.4 Arithmetic of Algebraic Fractions
1.5 Formulae and Transposition

2: Functions
2.1 Basic concepts of functions
2.2 The graph of a function and parametric form
2.3 One to one and inverse functions
2.4 Characterising Functions
2.5 The Straight Line
2.6 The Circle
2.7 Some common engineering functions

3: Polynomials, inequalities and partial fractions
3.1 Solving linear equations
3.2 Solving quadratic equations
3.3 Solving polynomial equations
3.4 Solving simultaneous linear equations
3.5 Solving inequalities
3.6 Partial fractions

4: Trigonometry

4.1 Right Angled Triangles
4.2 Trigonometric Functions
4.3 Trigonometric Identities
4.4 Applying Trigonometry to Triangles
4.5 Applying Trigonometry to Waves

5: Functions and Modelling

5.1 The Modelling Cycle and Functions
5.2 Quadratic Functions and Modelling
5.3 Oscillating Functions and Modelling
5.4 Inverse Square Functions and Modelling

6: Logarithms and exponentials
6.1 The exponential Function
6.2 The hyperbolic function
6.3 Logarithms
6.4 The logarithm function
6.5 Log-linear graphs
6.6 Modelling Exercises

7: Matrices
7.1 Introduction to matrices
7.2 Matrix multiplication
7.3 Determinants
7.4 The inverse of a matrix

8: Using matrices and determinants to solve equations
8.1 Cramer's rule for solving simultaneous equations
8.2 Solving simultaneous equations using the inverse matrix
8.3 Gauss elimination

9: Vectors
9.1 Basic concepts of vectors
9.2 Cartesian components of vectors
9.3 The Scalar Product
9.4 The Vector product
9.5 Vectors, Lines and Planes
9.6 Vectors and Electrostatics

10: Complex numbers

10.1 Complex arithmetic
10.2 Argand diagrams and polar form
10.3 Exponential form
10.4 De Moivre's theorem

11: Differentiation
11.1 Introducing differentiation
11.2 Using a table of derivatives
11.3 Higher derivatives
11.4 Differentiating Products and Quotients
11.5 The Chain Rule
11.6 Parametric Differentiation
11.7 Implicit Differentiation

12: Applications of differentiation
12.1 Tangents and Normals
12.2 Maxima and Minima
12.3 The Newton Raphson Method
12.4 Curvature
12.5 Differentiation of Vectors
12.6 Case Study : Complex Impedance

13: Integration
13.1 Basic Concepts of Integration
13.2 Definite Integrals
13.3 The Area bounded by a Curve
13.4 Integration by Parts
13.5 Integration by Substitution and by Partial Fractions
13.6 Integration of Trigonometric Functions

14: Applications of Integration I
14.1 Integration of the Limit of a Sum
14.2 Mean Value and RMS Value
14.3 Volumes of Solids of Revolution
14.4 Lengths of Curves and Areas of Surfaces of Revolution
14.5 Integration by Substitution and using Partial Fractions

15: Applications of integration II

15.1 Integrals involving vectors
15.2 Calculating centres of mass
15.3 Moment of inertia

16: Sequences and series
16.1 Sequences and series
16.2 Infinite series
16.3 The binomial series
16.4 Power series
16.5 Maclaurin and Taylor series

17: Conic sections

17.1 Conic sections (circle, ellipse, parabola and hyperbola)
17.2 Polar co-ordinates
17.3 Parametric curves

18: Functions of several variables
18.1 Functions of several variables
18.2 Partial derivatives
18.3 Stationary points
18.4 Errors and percentage change

19: Differential equations

19.1 Modelling with differential equations
19.2 First Order Ordinary Differential Equations
19.3 Second Order Ordinary Differential Equations
19.4 Applications of Differential Equations

20: The Laplace transform

20.1 Causal functions
20.2 The transform and its inverse
20.3 Further Laplace transforms
20.4 Solving differential equations
20.5 The convolution theorem
20.6 Transfer functions

21: z-Transforms
21.1 The z-Transform
21.2 Basics of z-Transform Theory
21.3 z-Transforms and Difference Equations
21.4 Engineering Applications of z-Transforms
21.5 Sampled Functions
22. Eigenvalues and Eigenvectors
22.1 Basic Concepts
22.2 Applications of Eigenvalues and Eigenvectors
22.3 Repeated Eigenvalues and Symmetric Matrices
22.4 Numerical determination of Eigenvalues and Eigenvectors

23: Fourier Series

23.1 Periodic Functions
23.2 Representation of Periodic Functions by Fourier Series
23.3 Even and Odd Functions

23.4 Convergence

23.5 Half Range Series
23.6 The Complex Form
23.7 Applications of Fourier Series

24: Fourier Transforms

24.1 The Fourier Transform
24.2 Properties of the Fourier Transform
24.3 Some Special Fourier Transform Pairs

25: Partial Differential Equations
25.1 Partial Differential Equations
25.2 Applications of PDEs
25.3 Separation of Variables
25.4 Solution by Fourier Series

26: Functions of a Complex Variable

26.1 Complex Functions
26.2 Cauchy-Riemann Equations and Conformal Mapping
26.3 Standard Complex Functions
26.4 Basic Complex Integration
26.5 Cauchy's Theorem
26.6 Singularities and Residues

27: Multiple Integration

27.1 Introduction to Surface Integrals
27.2 Multiple Integrals over Non-rectangular Regions
27.3 Volume Integrals
27.4 Changing Coordinates

28: Differential Vector Calculus
28.1 Background to Vector Calculus
28.2 Differential Vector Calculus
28.3 Orthogonal Curvilinear Coordinates

29: Integral Vector Calculus
29.1 Line Integrals Involving Vectors
29.2 Surface and Volume Integrals
29.3 Integral Vector Theorems

30: Introduction to Numerical Methods
30.1 Rounding Error and Conditioning
30.2 Gaussian Elimination
30.3 LU Decomposition
30.4 Matrix Norms
30.5 Iterative Methods for Systems of Equations

31: Numerical Methods of Approximation

31.1 Polynomial Approximation
31.2 Numerical Integration
31.3 Numerical Differentiation
31.4 Non-linear Equations
32. Numerical Initial Value Problems
32.1 Initial Value Problems
32.2 Linear Multistep Methods
32.3 Predictor-Corrector Methods
32.4 Parabolic PDEs
32.5 Hyperbolic PDEs

33: Numerical Boundary Value Problems
33.1 Two Point Boundary Value Problems
33.2 Elliptic PDEs

34: Modelling Motion

34.1 Projectiles

34.2 Forces in more than one dimension
34.3 Resisted Motion

35: Sets and Probability
35.1 Sets
35.2 Elementary Probability
35.3 Addition and Multiplication Laws of Probability
35.4 Total Probability and Bayes' Theorem

36: Descriptive Statistics
36.1 Describing Data
36.2 Exploring Data

37: Discrete Probability Distributions
37.1 Discrete Probability Distributions
37.2 The Binomial Distribution
37.3 The Poisson Distribution
37.4 The Hypergeometric Distribution

38: Continuous Probability Distributions
38.1 Continuous probability distributions
38.2 The uniform distribution
38.3 The Exponential Distribution
39. The normal distribution
39.1 The random distribution
39.2 The normal approximation to the binomial distribution
39.3 Sums and differences of random variables

40: Sampling Distributions and Estimation
40.1 Sampling Distributions and Estimation
40.2 Introduction to Confidence Intervals

41: Hypothesis Testing

41.1 Statistical Tests

41.2 Tests concerning a single sample
41.3 Tests concerning two samples

42: Goodness of Fit and Contingency Tables
42.1 Goodness of Fit
42.2 Contingency Tables

43: Regression and Correlation
43.1 Regression
43.2 Correlation

44: Analysis of Variance
44.1 One-Way Analysis of Variance
44.2 Two-Way Analysis of Variance
44.3 Experimental Design

45: Non-parametric Statistics
45.1 Non-parametric Tests for a single sample
45.2 Non-paramteric Tests for two samples

46 : Reliability and Quality Control
46.1 Reliability
46.2 Quality Control

47: Mathematics and Physics Miscellany
47.1 Dimensional Analysis in Engineering
47.2 Mathematical Explorations
47.3 Physics Case Studies

48: Engineering Case Studies
48.1 Engineering Case Studies

49: Students' Guide
49.1 Students' Guide

50: Tutor's Guide
50.1 Tutor's Guide

