
5 Product Spaces

Recall X × Y = {(x, y) : x ∈ X, y ∈ Y }. A rectangle is any set E × F ⊆
X × Y .
Theorem 5.1

If Ci, i = 1, 2 are semi-rings in Xi, i = 1, 2 respectively then C1 × C2 is a
semi-ring in X1 ×X2.
Proof

Let E1 × F1, E2 × F2 ∈ C1 × C2. Then

(E1 × F1) ∩ (E2 × F2) = (E1 ∩ E2)× (F1 ∩ F2)
∈ C1 × C2 since C1 and C2 are semi-rings.

The result obviously extends to infinite intersections.
For differences observe that

(E1 × F1) \ (E2 × F2) = ((E1 \ E2)× (F1 \ F2))
∪ ((E1 ∩ E2)× (F1 \ F2))
∪ ((E1 \ E2)× (F1 ∩ F2)),

a disjoint union. (This is most easily seen in a diagram.) And since C1 is a
semi-ring we can write E1\E2 =

⋃m
i=3 Ei for some disjoint Ei ∈ C1. Similarly

F1 \ F2 =
⋃n

j=3 Fj for some disjoint Fi ∈ C2. Thus

(E1 × F1) \ (E2 × F2) =
m⋃

i=3

n⋃

j=3

(Ei × Fj)

∪
n⋃

j=3

((E1 ∩ E2)× Fj) ∪
m⋃

i=3

(Ei × (F1 ∩ F2)),

a finite union of disjoint sets of C1 × C2 as required. ¥
Note If Ei, i = 1, 2 are σ-fields in Xi respectively then E1 × E2 need not be
a σ-field in X1 ×X2.
Definition The product σ-field of E1 and E2, denoted by E1 ∗ E2 is the
minimal σ-field containing E1 × E2.
Definition For A ⊆ X × Y the section of A at x ∈ X is

Ax = {y : (x, y) ∈ A},
while the section of A at y ∈ Y is

Ay = {x : (x, y) ∈ A}.
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Theorem 5.2 Let (X,F) and (Y,G) be measurable spaces. Then if A ∈
F ∗ G we have

Ax ∈ G for all x ∈ X,

Ay ∈ F for all y ∈ Y .

Proof Let

C = {E ⊆ X × Y : Ex ∈ G for all x ∈ X}.
If G×H ∈ F × G then

(G×H)x =
{

H if x ∈ G
∅ if x /∈ G

In both cases the result is in G as is required for inclusion in C, hence
F × G ⊆ C.
Claim C is a σ-field.
Simply note that (

⋃∞
n=1 En)x =

⋃∞
n=1 (En)x and

(E1 \ E2)x =





(E1)x if x ∈ (E1)y \ (E2)y

(E1)x \ (E2)x if x ∈ (E1)y ∩ (E2)y

φ otherwise.

So, since G is a σ-field, we obtain the claim.
Thus C is a σ-field containing F × G whilst F ∗ G is the minimal such

σ-field. Hence F ∗ G ⊆ C.
So if A ∈ F ∗ G then A satisfies the condition defining the collection C,

namely Ax ∈ G for all x ∈ X.
Similarly, for Ay examine D = {E ⊆ X × Y : Ey ∈ F for all y ∈ Y }. ¥
(Note how the form of this proof is very similar to that of Corollary 1.5

and Theorem 1.7 in the notes.)
Our aim now is, given measure spaces (X,F , µ) and (Y,G, ν) to define

a measure on the Product Measurable Space (X × Y,F ∗ G). We shall show
how to use integration to give a measure (The Product Measure) on this
space.

Let (X,F , µ) and (Y,G, ν) be σ-finite measure spaces.
Lemma 5.1

For all A ∈ F ∗G the ν-measure of an x-section, ν(Ax) : X → R∗, is an
F-measurable function.
Proof Not given. ¥
Note The situation is symmetric so µ(Ay) : Y → R∗ is an G-measurable
function.
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Theorem 5.3 The set function

λ(A) =
∫

X
ν(Ax)dµ (1)

is a measure on F ∗ G.
Proof Not given. ¥
Notation I will write λ = ν ∗ µ, though this is non-standard. But now we
have a measure space (X × Y,F ∗ G, ν ∗ µ).

For C ×D ∈ F ∗ G we have

ν((C ×D)x) =
{

ν(D) if x ∈ C
0 otherwise.

This is a simple function so the integral (1) simply evaluates as λ(C×D) =
ν(D)µ(C). So λ extends the measure ν×µ. From Theorem 2.12, if µ and ν
are σ-finite then such extensions are unique. But by symmetry,

∫
Y µ(Ay)dν

is also a measure on F ∗ G extending ν × µ. So by uniqueness,
∫

X
ν(Ax)dµ =

∫

Y
µ(Ay)dν. (2)

If g : X × Y → R∗ let gx : Y → R∗ be given by gx(y) = g(x, y) and
gy : X → R∗ by gy(x) = g(x, y). Then
Lemma 5.2

If g : X × Y → R∗ is F ∗ G-measurable then gx is G-measurable and gy

is F-measurable.
Proof From the definition, g being F ∗ G-measurable means that

{(x, y) : g(x, y) > c} ∈ F ∗ G for all c ∈ R,

in which case, by Theorem 5.2,

{(x, y) : g(x, y) > c}x ∈ G for all c ∈ R,

and so

{y : gx(y) > c} ∈ G for all c ∈ R.

Hence gx is G-measurable. Similarly for gy. ¥
We now come to an important result that expresses integration with

respect to a product measure in terms of iterated integrals with respect
to the two original measures. It is, in fact, most often used to justify the
interchange of integrals.
Theorem 5.4 (Fubini) Let (X,F , µ) and (Y,G, ν) be σ-finite measure spaces
and λ = µ ∗ ν. Let g : X × Y → R∗ be F ∗ G-measurable.
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(i) If g is non-negative then the functions

α(x) =
∫

Y

gxdν and β(y) =
∫

X

gydµ

are measurable and

∫

X×Y

gdλ =
∫

X




∫

Y

gxdν


 dµ =

∫

Y




∫

X

gydµ


 dν. (3)

(ii) If g : X × Y → R∗ is λ-integrable then gx is ν-integrable for almost all
x, gy is µ-integrable for almost all y and (3) holds.
(iii) If g : X × Y → R∗ is F ∗ G-measurable and

∫

X




∫

Y

|gx| dν


 dµ < ∞

then g : X × Y → R∗ is λ-integrable.
Proof
(i) This is done in the same stages as found in the proof of Lemma 2.13.
Consider first g = χA for some A ∈ F × G. Then

α(x) =
∫

Y

(χA)x dν

= ν {y : (χA)x (y) = 1} since (χA)x is a simple function,
= ν{y : (x, y) ∈ A}
= ν(Ax),

which is measurable by Lemma 5.1. Similarly for β(y).
We can now compare the integrals. For g we have

∫

X×Y

gdλ =
∫

X×Y

χAdλ = λ(A)

by definition of integration of a simple function such as χA. Also

∫

X
α(x)dµ =

∫

X
ν(Ax)dµ

= λ(A) by definition (1) of λ.

Thus we get one of the equalities in (3). The other follows from using (2).
Secondly, for
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g =
n∑

i=1

aiχAi
,

a simple function, then

α(x) =
n∑

i=1

aiν(Aix),

a finite sum of measurable functions hence measurable. Further

∫

X×Y
gdλ =

n∑

i=1

aiλ(Ai)

while

∫

X
α(x)dµ =

n∑

i=1

ai

∫

X
ν(Aix)dµ

=
n∑

i=1

aiλ(Ai).

So (3) holds for simple functions.
Finally, given a non-negative g choose a sequence of simple, measurable

functions {gn}n≥1 increasing to g. Then {gnx}n≥1 and {gy
n}n≥1 are similar

sequences converging to gx and gy respectively. We can apply Lebesgue’s
Monotone Convergence Theorem, obtaining

α(x) =
∫

Y
gxdν = lim

n→∞

∫

Y
gnxdν,

which is the limit of measurable functions, by the second part above, hence
measurable. Similarly for β(y).

So now
{∫

Y gnxdν
}

n≥1
is an increasing sequence of non-negative mea-

surable functions and we can apply Theorem 4.11 again. Thus

∫

X
α(x)dµ =

∫

X

(
limn→∞

∫

Y
gnxdν

)
dµ

= limn→∞
∫

X

(∫

Y
gnxdν

)
dµ by Theorem 4.11,

= limn→∞
∫

X×Y
gndλ

since (3) holds for
simple functions,

=
∫

X×Y
gdλ by Theorem 4.11 again.
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Thus we get one of the equalities in (3). The other follows from using (2).
Hence (3) holds for non-negative g.
(ii) Assuming now that g is λ-integrable implies that both g+ and g− are
λ-integrable and in particular, F ∗ G-measurable. Apply (i) to g+ and g−.
Let

α±(x) =
∫

Y

g±x dν. (4)

Then (3) for non-negative functions implies

∫

X
α±(x)dµ =

∫

X×Y
g±dλ

< ∞ since g is λ-integrable.

So, by Lemma 4.5 both α+ and α− are finite except, possibly, on (perhaps
different) sets of µ-measure zero.

But α±(x) < ∞ a.e. (µ) implies
∫

Y
g±x dν = α±(x) < ∞

a.e.(µ), in which case g±x are ν-integrable a.e.(µ). So outside the union of
the two sets of µ-measure zero gx = g+

x − g−x is ν-integrable. Similarly for
gy.

Now apply (3) for non-negative functions to both g+ and g− separately
and subtract to get (3) for g.
(iii) Recall from an earlier note that if g is F ∗G-measurable then |g| is also
F ∗ G-measurable and, trivially, it is non-negative. So by (i)

∫

X×Y
|g|dλ =

∫

X

(∫

Y
|g|dν

)
dµ

< ∞ by assumption.

So |g| is λ-integrable and thus g is λ-integrable. Thus we are back to case
(ii). ¥
Example Let

g(x, y) =
{

e−y sin 2xy on [0, 1× [0,∞)
0 elsewhere

Let λ be the product measure on L ∗ L.
Claim g is λ-integrable.
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Note that |g| ≤ e−y so, by Corollary 4.18 it suffices to show that e−y ∈ L(λ).
But e−y is the limit of an increasing sequence of non-negative λ-measurable
simple functions, for example,

hN (x, y) =
∑

n≤N2

e−n/NχAn,N

where

An,N = [0, 1]×
[
n− 1

N
,

n

N

]
.

Then λ(An,N ) = 1
N , that is, the set is λ-measurable. Hence e−y is λ-

measurable. All functions are non-negative so, by Lebesgue’s Monotone
Convergence Theorem,

∫

[0,1]×[0,∞)
e−ydλ = lim

N→∞

∫

[0,1]×[0,∞)
hNdλ

= lim
N→∞

∑

n≤N2

∫ n/N

(n−1)/N
e−n/Ndy

≤ lim
N→∞

∑

n≤N2

∫ n/N

(n−1)/N
e−ydy

= lim
N→∞

∫ N

0
e−ydy

= 1.

Hence e−y ∈ L(λ) as required and the claim is verified.
Then by Theorem 5.4(ii) we have

∫ 1

0

∫ ∞

0
e−y sin 2xydydx =

∫ ∞

0

∫ 1

0
e−y sin 2xydydx. (5)

But, on integrating by parts,
∫ ∞

0
e−y sin 2xydy =

2x

1 + 4x2

so the left hand side of (5) equals
∫ 1

0

2x

1 + 4x2
dx =

1
4

log 5.

The right hand side of (5) contains
∫ 1

0
e−y sin 2xydy =

e−y sin2 y

y
.
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Hence (5) gives
∫ ∞

0

e−y sin2 y

y
dy =

1
4

log 5.

Note that a lot of the above example was directed at showing the function
to be µ2-integrable. This can be weakened to L2-measurable. It is possible
to extend Fubini’s result, proving
Theorem 5.5 Let g be Lebesgue (i.e. L2)-measurable on R2 and assume
that the iterated improper Riemann integrals

∫ ∞

−∞

∫ ∞

−∞
g(x, y)dxdy and

∫ ∞

−∞

∫ ∞

−∞
g(x, y)dydx

exist and are finite. If one of the integrals
∫ ∞

−∞

∫ ∞

−∞
|g(x, y)|dxdy and

∫ ∞

−∞

∫ ∞

−∞
|g(x, y)|dydx (6)

is finite, then the integrals of (3) are equal.
Proof Not given. ¥

Note how we can check either of the conditions in (6). Often one of there
iterated integrals is easier to evaluate than the other.
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