5 Product Spaces
Recall X xY = {(z,y) : x € X,y € Y}. A rectangle is any set E x F' C
X xY.

Theorem 5.1

If C;,1=1,2 are semi-rings in X;,1 = 1,2 respectively then C1 X Cy is a
semi-ring in X1 X Xo.
Proof

Let B4 x Iy, Ey x Fy € C; X Cy. Then

(E1 X Fl) N (EQ X FQ) = (El ﬂEg) X (F1 N Fg)

€ (1 x(Cy since C1 and Cy are semi-rings.

The result obviously extends to infinite intersections.
For differences observe that

(E1 x 1)\ (Ba x Fp) = ((Ex\ E2) x (F1\ F%))
U ((El N EQ) X (Fl \Fg))
U ((Er\ Eo) x (F1 N Fy)),
a disjoint union. (This is most easily seen in a diagram.) And since C; is a

semi-ring we can write 1\ Es = |J;~ 4 E; for some disjoint E; € C;. Similarly
i\ = U;.ng F; for some disjoint Fj € Co. Thus

m n
(B1 x F1)\ (B3 x F) UUExF
: ]:
n m
U (BN Ey) x Fy) U J(Bi x (Fr N Fy)),
j=3 i=3
a finite union of disjoint sets of C; x Cs as required. [ |

Note If &;,i = 1,2 are o-fields in X; respectively then & x & need not be
a o-field in X7 x Xs.

Definition The product o-field of & and &, denoted by &; * & is the
minimal o-field containing & x &s.

Definition For A C X x Y the section of A at x € X is

Ay ={y: (z,y) € A},
while the section of A at y €Y is

AV ={x: (z,y) € A}.



Theorem 5.2 Let (X, F) and (Y,G) be measurable spaces. Then if A €
F * G we have

A, €G forall x € X,

AYe F forallyeY.
Proof Let

C={FECXxY:E,eGforalze X}
If G x He F x @G then

H ifzeg
(GxH)m—{w if1dg
In both cases the result is in G as is required for inclusion in C, hence
FxgGcCcC.
Claim C is a o-field.
Simply note that ((J,~; En), = Up—; (En), and

n=1
(E1)z if v € (E1)y \ (E2)y
(E1\ E2)z = (E1)e\ (E2)z if 2 € (1), N (Ea)y
o} otherwise.

So, since G is a o-field, we obtain the claim.

Thus C is a o-field containing F x G whilst F x G is the minimal such
o-field. Hence F xG C C.

So if A € F * G then A satisfies the condition defining the collection C,
namely A, € G for all z € X.

Similarly, for AY examine D={FEC X xY :EYc FforallyeY} N

(Note how the form of this proof is very similar to that of Corollary 1.5
and Theorem 1.7 in the notes.)

Our aim now is, given measure spaces (X, F,u) and (Y, G,v) to define
a measure on the Product Measurable Space (X x Y, F % G). We shall show
how to use integration to give a measure (The Product Measure) on this
space.

Let (X, F,pu) and (Y, G, v) be o-finite measure spaces.
Lemma 5.1

For all A € F*G the v-measure of an x-section, v(A;) : X — R*, is an
F-measurable function.

Proof Not given. |

Note The situation is symmetric so pu(AY) : Y — R* is an G-measurable
function.



Theorem 5.3 The set function

AA) = [ () 1)

1s a measure on F x G.
Proof Not given. |

Notation I will write A = v * u, though this is non-standard. But now we
have a measure space (X X Y, F x G, v * ).

For C x D € F G we have

V((CxD)x)_{ S(D) if 2 € C

otherwise.

This is a simple function so the integral (1) simply evaluates as A(C' x D) =
v(D)p(C). So X extends the measure v X y. From Theorem 2.12, if ¢ and v
are o-finite then such extensions are unique. But by symmetry, [, u(AY)dv
is also a measure on F * G extending v X u. So by uniqueness,

J = [ wana. )

Y
Ifg: X xY — R*let g, : Y — R* be given by ¢.(y) = g(z,y) and
g¥: X — R* by ¢¥(z) = g(x,y). Then
Lemma 5.2

If g: X XY — R* is F x G-measurable then g, is G-measurable and g¥
is F-measurable.

Proof From the definition, g being F * G-measurable means that

{(z,y) : g(z,y) >c} € FxG forall ceR,

in which case, by Theorem 5.2,

{(z,y) : g(z,y) > c}p €G forallceR,

and so

{y:9.(y) >c} €G forallceR.

Hence g, is G-measurable. Similarly for g¥. |

We now come to an important result that expresses integration with
respect to a product measure in terms of iterated integrals with respect
to the two original measures. It is, in fact, most often used to justify the
interchange of integrals.

Theorem 5.4 (Fubini) Let (X, F, u) and (Y, G, v) be o-finite measure spaces
and A= pu*xv. Let g: X XY — R* be F x G-measurable.



(i) If g is non-negative then the functions

a(z) —/gmdv and ﬁ(y)—/gydu
Y X

are measurable and

[ = [ ([ ) an= /(X/gydﬂ w "
X Y Y

XXY
(ii) If g: X xY — R* is A-integrable then g, is v-integrable for almost all
x, g¥ is p-integrable for almost all y and (3) holds.
(iii) If g: X x Y — R* is F * G-measurable and

J | J1aslar ) du < o

X Y
then g : X XY — R* is A-integrable.

Proof
(i) This is done in the same stages as found in the proof of Lemma 2.13.
Consider first g = x4 for some A € F x G. Then

o) = [ (v

Y
= v{y:(xa),(y) =1} since (x4), is a simple function,
= v{y: (z,y) € A}

V(A:Jc)>

which is measurable by Lemma 5.1. Similarly for 5(y).
We can now compare the integrals. For g we have

/ gd) = / YadA = A(A)

XxXY XxY

by definition of integration of a simple function such as x 4. Also

/ alz)dy = / v(Az)du
X X
= A(A) by definition (1) of .

Thus we get one of the equalities in (3). The other follows from using (2).
Secondly, for



n
9= Z AiX Ay
i=1

a simple function, then

a(z) = Z a;iv(Aiz),
i=1

a finite sum of measurable functions hence measurable. Further

gd)\ = ai)\ Al
/X><Y ; ( )

while

[ atwyin = Zj [ i

i=1

So (3) holds for simple functions.

Finally, given a non-negative g choose a sequence of simple, measurable
functions {gy }n>1 increasing to g. Then {gns},>; and {gn},>; are similar
sequences converging to g, and ¢¥ respectively. We can apply Lebesgue’s
Monotone Convergence Theorem, obtaining

a(x) :/ gedv = lim [ gp.dv,
Y n—ee Jy

which is the limit of measurable functions, by the second part above, hence
measurable. Similarly for G(y).

So now { fy gmdy}n>1 is an increasing sequence of non-negative mea-
surable functions and we can apply Theorem 4.11 again. Thus

/X oledy = /X (hmn_}oo /Y gmdu> a

= limn_,oo/ (/ gmdv> dyp by Theorem 4.11,
X Y

= limy, o / gndA since (3) holfis for
XxY simple functions,
= / gdA by Theorem 4.11 again.
XxY



Thus we get one of the equalities in (3). The other follows from using (2).
Hence (3) holds for non-negative g.

(ii) Assuming now that g is A-integrable implies that both g% and g~ are
A-integrable and in particular, F * G-measurable. Apply (i) to g™ and g~.
Let

ot@) = [ gEdv. (4)
/

Then (3) for non-negative functions implies

/ai(aj)d,u = / grd\
X XxY

< o0 since g is A-integrable.

So, by Lemma 4.5 both o™ and o~ are finite except, possibly, on (perhaps
different) sets of u-measure zero.
But ot (x) < oo a.e. (i) implies

/ grdv = ot (x) < 0o
Y

a.e.(u), in which case gF are v-integrable a.e.(u). So outside the union of
the two sets of y-measure zero g, = g — g, is v-integrable. Similarly for

g%
Now apply (3) for non-negative functions to both g and g~ separately
and subtract to get (3) for g.

(iii) Recall from an earlier note that if g is F * G-measurable then |g| is also
F x G-measurable and, trivially, it is non-negative. So by (i)

fow = ()

< o0 by assumption.

So |g| is A-integrable and thus g is A-integrable. Thus we are back to case
(ii). |
Example Let

otea) ={ Y G
Let A be the product measure on L * L.
Claim g is A-integrable.



Note that |g| < e™¥ so, by Corollary 4.18 it suffices to show that e™¥ € L(\).
But e7Y is the limit of an increasing sequence of non-negative A-measurable
simple functions, for example,

hy(ey)= Y e "Vxa,

n<N2
where
n—1n
A,nv =10,1 —, =]
n,N [O) ]X |: N 7N:|
Then A(A,n) = +, that is, the set is A-measurable. Hence e ¥is A-

measurable. All functions are non-negative so, by Lebesgue’s Monotone
Convergence Theorem,

/ e Yd\N = lim hydA
[0,1] x[0,00) N—00 J10,1]x[0,00)

B . n/N /N
= lim Z e dy

N—oo £, Jin—1)/N

n/N
lim E / e Ydy
N=eo N2 (n-1)/N

N
= i ~vd
dm fy e
= 1

IN

Hence e™¥ € L£(\) as required and the claim is verified.
Then by Theorem 5.4(ii) we have

1 e} 00 1
/ / e Y sin 2zydydxr = / / e Y sin 2zydydz. (5)
0 JO 0 0

But, on integrating by parts,

2z

o0
/0 e Ysin 2zydy = T2

so the left hand side of (5) equals

1
2x 1
T iz = > logh.
/0 114227718

The right hand side of (5) contains
1 —Y i 2
/ e Ysin 2zydy = St
0

7



Hence (5) gives

00 =Y oin2 1
/ elsiny — Liogs.
0 Y 4

Note that a lot of the above example was directed at showing the function
to be py-integrable. This can be weakened to £2-measurable. It is possible
to extend Fubini’s result, proving

Theorem 5.5 Let g be Lebesgue (i.e. L£2)-measurable on R? and assume
that the iterated improper Riemann integrals

//g(%y)dfvdy and //g(w7y)dydx

exist and are finite. If one of the integrals

/Z /O; 9(z,y)|dzdy  and /O; /Z |9(z,y)|dydz (6)

is finite, then the integrals of (3) are equal.
Proof Not given. |

Note how we can check either of the conditions in (6). Often one of there
iterated integrals is easier to evaluate than the other.



