
4 Integration

4.1 Integration of non-negative simple functions
Throughout we are in a measure space (X,F , µ).

Definition Let s be a non-negative F -measurable simple function so that

s =
N∑

i=1

aiχAi
,

with disjoint F -measurable sets Ai,
⋃N

i=1 Ai = X and ai ≥ 0. For any E ∈ F
define the integral of f over E to be

IE(s) =
N∑

i=1

aiµ(Ai ∩ E),

with the convention that if ai = 0 and µ(Ai ∩E) = +∞ then 0× (+∞) = 0.
(So the area under s ≡ 0 on R is zero.)

Example 13 Consider ([0, 1],L, µ). Define

f(x) =

{
1 if x rational
0 if x irrational.

This is a simple function with A1 = Q∩[0, 1] ∈ L and A0 the set of irrationals
in [0, 1] which, as the complement of A1, is in L. Thus f is measurable and

I[0,1](f) = 1µ(Q ∩ [0, 1]) + 0µ(Qc ∩ [0, 1])

= 0,

since the Lebesgue measure of a countable set is zero.

Lemma 4.1
If E1 ⊆ E2 ⊆ E3... are in F and E =

⋃∞
n=1 En then

lim
n→∞

µ(En) = µ(E).

(We say that we have an increasing sequence of sets.)
Proof

If there exists an n such that µ(En) = +∞ then En ⊆ E implies µ(E) =
+∞ and the result follows.

So assume that µ(En) < +∞ for all n ≥ 1. Then
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E = E1 ∪
∞⋃

n=2

(En \ En−1)

is a disjoint union. Note that En−1 ⊆ En implies En = (En \ En−1) ∪ En−1,
a disjoint union. So µ(En) = µ(En \En−1) + µ(En−1). Because the measures
are finite we can rearrange as µ(En \ En−1) = µ(En)− µ(En−1). So

µ(E) = µ(E1) +
∞∑

n=2

µ(En \ En−1)

= µ(E1) + lim
N→∞

N∑
n=1

(µ(En)− µ(En−1))

(by definition of infinite sum)

= lim
N→∞

µ(EN).

¥
Theorem 4.2

Let s and t be two simple non-negative F -measurable functions on (X,F , µ)
and E, F ∈ F . Then

(i) IE(cs) = cIE(s) for all c ∈ R,

(ii) IE(s + t) = IE(s) + IE(t),

(iii)If s ≤ t on E then IE(s) ≤ IE(t),

(iv) If F ⊆ E then IF (s) ≤ IE(s),

(v) If E1 ⊆ E2 ⊆ E3 ⊆ ... and E =
⋃∞

k=1 Ek then limk→∞ IEk
(s) = IE(s).

Proof (Proofs of all parts will be omitted from lectures and left to students.
the idea is to write out the simple functions for both s and t in terms of
common sets Cij as in the proof of Lemma 3.7.)

As in Lemma 3.7 write

s =
M∑
i=1

aiχAi
=

M∑
i=1

N∑
j=1

aiχCij

and

t =
N∑

j=1

bjχBj
=

M∑
i=1

N∑
j=1

bjχCij
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with Cij = Ai ∩Bj ∈ F .

*(i) Note that cs =
∑M

i=1 caiχAi
and so

IE(cs) =
M∑
i=1

caiµ(Ai)

= c

M∑
i=1

aiµ(Ai) = cIE(s).

*(ii) Then s + t =
∑M

i=1

∑N
j=1(ai + bj)χCij

. So

IE(s + t) =
M∑
i=1

N∑
j=1

(ai + bj)µ(Cij ∩ E)

=
M∑
i=1

N∑
j=1

aiµ(Cij ∩ E) +
M∑
i=1

N∑
j=1

bjµ(Cij ∩ E)

=
M∑
i=1

aiµ

(
N⋃

j=1

(Cij ∩ E)

)
+

N∑
j=1

bjµ

(
M⋃
i=1

(Cij ∩ E)

)

=
M∑
i=1

aiµ(Ai ∩ E) +
N∑

j=1

bjµ(Bj ∩ E)

= IE(s) + IE(t).

*(iii) Given any 1 ≤ i ≤ M, 1 ≤ j ≤ N for which Cij ∩ E 6= φ we have for
any x ∈ Cij ∩ E that ai = s(x) ≤ t(x) = bj so

IE(s) =
M∑
i=1

N∑
j=1

aiµ(Cij ∩ E)

≤
M∑
i=1

N∑
j=1

bjµ(Cij ∩ E)

= IE(t).

*(iv) By monotonicity of µ we have
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IF (s) =
M∑
i=1

aiµ(Ai ∩ F )

≤
M∑
i=1

aiµ(Ai ∩ E)

= IE(s).

*(v) From Lemma 4.1 we know that if we have E1 ⊆ E2 ⊆ E3 ⊆ ... and
E =

⋃∞
k=1 Ek then limk→∞ µ(Ek) = µ(E). Thus

lim
k→∞

IEk
(s) = lim

k→∞

M∑
i=1

aiµ(Ai ∩ Ek)

=
M∑
i=1

ai lim
k→∞

µ(Ai ∩ Ek)

=
M∑
i=1

aiµ(Ai ∩ E) by Lemma 4.1,

= IE(s).

¥
4.2 Integration of non-negative measurable functions.
Definition If f : X → R+ is a non-negative F -measurable function, E ∈ F ,
then the integral of f over E is

∫

E

fdµ = sup {IE(s) : s a simple F -measurable function, 0 ≤ s ≤ f} .

Of course, if E 6= X we need only that f is defined on some domain
containing E.

Let I(f, E) denote the set

{IE(s) : s a simple F -measurable function, 0 ≤ s ≤ f}
so the integral equals sup I(f, E).

Note The integral exists for all non-negative F -measurable functions though
it might be infinite.
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If
∫

E
fdµ = ∞ we say the integral is defined.

If
∫

E
fdµ < ∞ we say that f is µ−integrable or summable on E.

Proposition 4.3
For a non-negative, F -measurable simple function, t, we have

∫
E

tdµ =
IE(t).
Proof

Given any simple F -measurable function, 0 ≤ s ≤ t we have IE(s) ≤ IE(t)
by Theorem 4.2(iii). So IE(t) is an upper bound for I(t, E) for which

∫
E

tdµ
is the least of all upper bounds. Hence

∫
E

tdµ ≤ IE(t).

Also,
∫

E
tdµ ≥ IE(s) for all simple F -measurable function, 0 ≤ s ≤ t,

and so is greater than IE(s) for any particular s, namely s = t. Hence∫
E

tdµ ≥ IE(t).

Thus
∫

E
tdµ = IE(t). ¥

Example 14 If f ≡ k, a constant, then
∫

E
fdµ = IE(f) = kµ(E).

Theorem 4.4 Throughout, all sets are in F and all functions are non-
negative and F -measurable.

(i) For all c ≥ 0,

∫

E

cfdµ = c

∫

E

fdµ, (15)

(ii) If 0 ≤ g ≤ h on E then

∫

E

gdµ ≤
∫

E

hdµ,

(iii) If E1 ⊆ E2 and f ≥ 0 then

∫

E1

fdµ ≤
∫

E2

fdµ.

Proof
(i) If c = 0 then the right hand side of (15) is 0 as is the left hand side by
Example 14.

Assume c > 0.
If 0 ≤ s ≤ cf is a simple F -measurable function then so is 0 ≤ 1

c
s ≤ f .

Thus

∫

E

fdµ ≥ IE

(
1

c
s

)
=

1

c
IE(s)

by Theorem 4.2(i). Hence c
∫

E
fdµ is an upper bound for I(cf, E) for which∫

E
cfdµ is the least upper bound. Thus c

∫
E

fdµ ≥ ∫
E

cfdµ.
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Starting with the observation that if 0 ≤ s ≤ f is a simple F -measurable
function then so is 0 ≤ cs ≤ cf we obtain

∫

E

(cf) dµ ≥ IE (cs) by the definition of

∫

E

= cIE(s) by Theorem 4.2(i).

Hence 1
c

∫
E
(cf)dµ is an upper bound for I(f, E) for which

∫
E

fdµ is the least
upper bound. Hence 1

c

∫
E
(cf)dµ ≥ ∫

E
fdµ, that is,

∫
E

cfdµ ≥ c
∫

E
fdµ.

Combining both inequalities gives our result.

(ii) Let 0 ≤ s ≤ g be a simple, F -measurable function. Then since g ≤ h
we trivially have 0 ≤ s ≤ h in which case IE(s) ≤ ∫

E
hdµ by the definition

of integral
∫

E
. Thus

∫
E

hdµ is an upper bound for I(g, E). As in (i) we get∫
E

hdµ ≥ ∫
E

gdµ.

(iii) Let 0 ≤ s ≤ f be a simple, F -measurable function. Then

IE1(s) ≤ IE2(s) by Theorem 4.2(iii)

≤
∫

E2

fdµ by the definition of

∫

E2

.

So
∫

E2
fdµ is an upper bound for I(f, E1) and so is greater than the least

of all upper bounds. Hence
∫

E2
fdµ ≥ ∫

E1
fdµ. ¥

Lemma 4.5
Assume E ∈ F , f ≥ 0 is F -measurable and

∫
E

fdµ < ∞. Set

A = {x ∈ E : f(x) = +∞}.
Then A ∈ F and µ(A) = 0.
Proof

Since f is F -measurable then f−1({∞}) ∈ F and so A = E∩ f−1({∞}) ∈
F . Define

sn(x) =

{
n if x ∈ A
0 if x /∈ A.

Since A ∈ F we deduce that sn is an F -measurable simple function. Also
sn ≤ f and so

nµ(A) = IE(sn) by definition of IE

≤ ∫
E

fdµ by definition of
∫

E

< ∞ by assumption.
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True for all n ≥ 1 means that µ(A) = 0. ¥
Lemma 4.6

If f is F -measurable and non-negative on E ∈ F and µ(E) = 0 then∫
E

fdµ = 0.

Proof
Let 0 ≤ s ≤ f be a simple, F -measurable function. So s =

∑N
n=1 anχAn

for some an ≥ 0, An ∈ F . Then IE(s) =
∑N

n=1 anµ(An ∩ E). But µ is
monotone which means that µ(An ∩E) ≤ µ(E) = 0 for all n and so IE(s) =
0 for all such simple functions. Hence I(f, E) = {0} and so

∫
E

fdµ =
sup I(f, E) = 0. ¥
Lemma 4.7 If g ≥ 0 and

∫
E

gdµ = 0 then

µ{x ∈ E : g(x) > 0} = 0.

Proof Let A = {x ∈ E : g(x) > 0} and An = {x ∈ E : g(x) > 1
n
}. Then

the sets An = E ∩ {x : g(x) > 1
n
} ∈ F satisfy A1 ⊆ A2 ⊆ A3 ⊆ ... with

A =
⋃∞

n=1 An. By lemma 4.1 µ(A) = limn→∞ µ(An). Using

sn(x) =

{
1
n

if x ∈ An

0 otherwise,

so sn ≤ g on An we have

1
n
µ(An) = IAn(sn)

≤ ∫
An

gdµ by the definition of
∫

An

≤ ∫
E

gdµ Thereom 4.4(iii)

= 0 by assumption.

So µ(An) = 0 for all n and hence µ(A) = 0. ¥
Definition If a property P holds on all points in E \A for some set A with
µ(A) = 0 we say that P holds almost everywhere (µ) on E, written as a.e.(µ)
on E.

(*It might be that P holds on some of the points of A or that the set of
points on which P does not hold is non-measurable. This is immaterial. But
if µ is a complete measure, such as the Lebesgue-Steiltje’s measure µF , then
the situation is simpler. Assume that a property P holds a.e.(µ) on E. The
definition says that the set of points, D say, on which P does not hold can be
covered by a set of measure zero, i.e. there exists A : D ⊆ A and µ(A) = 0.
Yet if µ is complete then D will be measurable of measure zero.

In this section we are not assuming that µ is complete.)
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So, for example, Lemma 4.7 can be restated as
Lemma 4.8

If g ≥ 0 and
∫

E
gdµ = 0 then g = 0 a.e.(µ) on E.

We can extend Theorem 4.4(ii) as follows.

Theorem 4.9 If g, h : X → R+ are F-measurable functions and g ≤ h
a.e.(µ) then

∫

E

gdµ ≤
∫

E

hdµ.

Proof
By assumption there exists a set D ⊆ E, of measure zero, such that for

all x ∈ E \D we have g(x) ≤ h(x). Let 0 ≤ s ≤ g be a simple, F -measurable
function, written as

s =
N∑

i=1

aiχAi
, with

N⋃
i=1

Ai = E.

The problem here is that we may well not have s ≤ h. Define

s∗(x) =

{
s(x) if x /∈ D
0 if x ∈ D

=
N∑

i=1

aiχAi∩Dc

which is still a simple, F -measurable function. Then for x ∈ E \D we have
s∗(x) = s(x) ≤ g(x) ≤ h(x), while for x ∈ D we have s∗(x) = 0 ≤ h(x).
Thus s∗(x) ≤ h(x) for all x ∈ E.

Note that Ai = (Ai ∩Dc) ∪ (Ai ∩D), a disjoint union in which case
µ(Ai) = µ(Ai∩Dc)+µ(Ai∩D) = µ(Ai). But Ai∩D ⊆ D and so µ (Ai ∩D) ≤
µ(D) = 0. Thus µ(Ai) = µ(Ai ∩Dc). Hence

IE(s∗) =
N∑

i=1

aiµ(Ai ∩Dc)

=
N∑

i=1

aiµ(Ai)

= IE(s).
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So IE(s) = IE(s∗) ≤ ∫
E

hdµ by the definition of integral
∫

E
. Thus

∫
E

hdµ is
an upper bound for I(g, E) while

∫
E

gdµ is the least of all upper bounds for
I(g, E). Hence

∫
E

hdµ ≥ ∫
E

gdµ. ¥
Corollary 4.10

If g, h : X → R+ are F-measurable with g = h a.e (µ) on E then

∫

E

gdµ =

∫

E

hdµ.

Proof
By assumption there exists a set D ⊆ E of measure zero such that for

all x ∈ E \ D we have g(x) = h(x). In particular, for these x we have
g(x) ≤ h(x) and h(x) ≤ g(x). So g ≤ h a.e. (µ) on E and h ≤ g a.e. (µ) on
E. Hence the result follows from two applications of Theorem 4.9. ¥

So, a function may have its values altered on a set of measure zero without
altering the value of its integral. In particular, by Lemma 4.5 we may assume
that a non-negative integrable function is finite valued.

Example 15 (c.f. Example 13) On ([0, 1],L, µ) the function

f(x) =

{
1 if x is rational
0 if x irrational

is 0 a.e.(µ) on [0, 1]. So

∫

[0,1]

fdµ =

∫

[0,1]

0dµ = 0.
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