4 Tntegration
4.1 Integration of non-negative simple functions

Throughout we are in a measure space (X, F, ).

Definition Let s be a non-negative F-measurable simple function so that

N
i=1

with disjoint F-measurable sets A;, Uf\il A; =X and a; > 0. For any £ € F
define the integral of f over E to be

Ip(s) = Z%M(Ai NE),

i=1
with the convention that if a; = 0 and u(A; N E) = +oo then 0 x (+00) = 0.
(So the area under s = 0 on R is zero.)

Example 13 Consider ([0, 1], £, u). Define

o) = { 1 if z rational

0 if z irrational.

This is a simple function with A; = QN[0, 1] € £ and Ay the set of irrationals
in [0, 1] which, as the complement of A;, is in £. Thus f is measurable and

Toa(f) = Lu(@N[0,1)) +0u(Q° N [0,1])
= 0,

since the Lebesgue measure of a countable set is zero.

Lemma 4.1
If Ey CEy C Es...arein F and E =, E, then

lim pu(E,) = p(E).

n—oo

(We say that we have an increasing sequence of sets.)
Proof

If there exists an n such that p(E,) = +oo then E, C E implies u(F) =
+o00 and the result follows.

So assume that p(E,) < +oo for all n > 1. Then



E=FEU G(En\En_l)

n=2

is a disjoint union. Note that F,_; C E, implies F,, = (E, \ E,_1) U E,,_1,
a disjoint union. So u(E,) = u(E, \ En—1) + p(E,—1). Because the measures
are finite we can rearrange as u(E, \ E,—1) = u(E,) — p(E,—1). So

WE) = p(B)+ Y u(Ey\ Baa)

n=2
N
= w(By) + lim 2_:1 ((En) = (o)
(by definition of infinite sum)
= lim p(Ey).

N—oo

Theorem 4.2

Let s and t be two simple non-negative F-measurable functions on (X, F, i)
and E, F € F. Then
i) Ig(cs) = clg(s) for all c € R,

i) Ig(s+1t) =Ig(s)+ Ig(t),
ii)If s <t on E then Ig(s) < Ig(t),
iv) If F C FE then Ip(s) < Ig(s),

(v) If By CE; C E3C ... and E = J,o, By then limy_,o Ig, (s) = Ip(s).
Proof (Proofs of all parts will be omitted from lectures and left to students.
the idea is to write out the simple functions for both s and ¢ in terms of
common sets Cj; as in the proof of Lemma 3.7.)

As in Lemma 3.7 write
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*(i) Note that ¢s = S0, ca;X 4, and so

Ig(cs) = ca;p(A

Ms

i=1
M
= cZa ) = clg(s).
=1

*(ii) Then s+t = Zf‘il Z;.Vzl(ai +bj)X¢,,- SO

M=
hE

I
_.

Ip(s+1) = (a; + by)u(Cy; N E)

1
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Mz
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a;pu(Cij NE) + Z ij,u Ci; NE)
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a;p (U Ci; NE) ) —I—iju (U CijﬂE))
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M:

N

ai(AiNE)+ > bju(B;NE)

H'M:

i=1 j=1
*(ill) Given any 1 <4 < M,1 < j < N for which C;; N E # ¢ we have for
any « € C;; N E that a; = s(z) < t(x) =b; so

Ie(s) = Y ap(C;NE)

i=1 j=1

M N
< D) bpCynE)
i=1 j=1
Tu(t).

*(iv) By monotonicity of p we have



M

Ip(s) = Zaiu(Ai NF)

*(v) From Lemma 4.1 we know that if we have Fy C Fy C F3 C ... and
E =2, Ex then limy_,o u(Ex) = p(E). Thus

M
lim Ig (s) = lim a;p(A; N Ey)

k—o00 k—o00 <
=1

M

= Zai klim w(A; N Ey)

=1

M
= Z aip(A; N E) by Lemma 4.1,
i=1

4.2 Integration of non-negative measurable functions.

Definition If f : X — R is a non-negative F-measurable function, £ € F,
then the integral of f over E is

/ fdu =sup{Ig(s) : s a simple F-measurable function, 0 < s < f}.
E

Of course, if F # X we need only that f is defined on some domain
containing F.

Let Z(f, EY) denote the set

{Ig(s) : s a simple F-measurable function, 0 < s < f}

so the integral equals supZ(f, E).

Note The integral exists for all non-negative F-measurable functions though
it might be infinite.



If fE fdu = oo we say the integral is defined.
If fE fdu < oo we say that f is u—integrable or summable on E.

Proposition 4.3
For a non-negative, F-measurable simple function, t, we have fE tdp =

Ig(t).
Proof

Given any simple F-measurable function, 0 < s < ¢ we have Ig(s) < Ig(t)
by Theorem 4.2(iii). So I(t) is an upper bound for Z(¢, E) for which [}, tdu
is the least of all upper bounds. Hence [, tdu < Ig(t).

Also, [,tdp > Ig(s) for all simple F-measurable function, 0 < s < ¢,
and so is greater than Ig(s) for any particular s, namely s = ¢. Hence

[ tdu > Ig(t).

Thus [, tdp = Ig(t). |
Example 14 If f = k, a constant, then [, fdu = Ig(f) = ku(E).
Theorem 4.4 Throughout, all sets are in F and all functions are non-

negative and F-measurable.
(i) For all ¢ >0,

[ eriu=c [ san (15)
(i) If 0 < g < h on E then

/gdué/hdu,
E E

(iii) If By C Ey and f > 0 then

fau< | fdu
B Es
Proof
(i) If ¢ = 0 then the right hand side of (15) is 0 as is the left hand side by
Example 14.

Assume ¢ > 0.
If 0 < s < cf is asimple F-measurable function then so is 0 < %s < f.

Thus
1 1
/ fd,u Z IE <—S> = —IE(S)
B c c

by Theorem 4.2(i). Hence ¢ [}, fdyu is an upper bound for Z(cf, E) for which
[z cfdu is the least upper bound. Thus ¢ [, fdu > [, cfdpu.

5



Starting with the observation that if 0 < s < f is a simple F-measurable
function then so is 0 < ¢s < ¢f we obtain

/ (cf)dp > Ig(cs) by the definition of /
E E
= clg(s) by Theorem 4.2(i).

Hence ! [, (cf)du is an upper bound for Z(f, E) for which [, fdp is the least
upper bound. Hence %fE(cf)d,u > [ fdu, that is, [, cfdp > c [, fdu.
Combining both inequalities gives our result.

(ii) Let 0 < s < g be a simple, F-measurable function. Then since g < h
we trivially have 0 < s < h in which case Ig(s) < fE hdp by the definition
of integral [,. Thus [, hdu is an upper bound for Z(g, ). As in (i) we get

Jephdu = [ gdp.
(iii) Let 0 < s < f be a simple, F-measurable function. Then

Ig,(s) < Ig,(s) by Theorem 4.2(iii)
< fdu by the definition of / .
E2 E2

So fE2 fdu is an upper bound for Z(f, Ey) and so is greater than the least
of all upper bounds. Hence [, fdu > [, fdpu. |
Lemma 4.5

Assume E € F, f >0 is F-measurable and fE fdu < oo. Set

A={z € FE: f(z) = +oo}.
Then A € F and pu(A) =0.
Proof
Since f is F-measurable then f~!({cc}) € Fandso A = EN f~1({cc}) €
F. Define

(z) = n ifzeA
T 0 ifx ¢ A

Since A € F we deduce that s, is an F-measurable simple function. Also
s, < f and so

nu(A) = Ig(s,) by definition of I
< fE fdp by definition of fE

< 00 by assumption.



True for all n > 1 means that u(A) = 0. [
Lemma 4.6

If f is F-measurable and non-negative on E € F and u(E) = 0 then
S fdp = 0.
Proof

Let 0 < s < f be a simple, F-measurable function. So s = ij:l anXa,
for some a, > 0,4, € F. Then Ig(s) = 22;1 anpt(A, N E). But p is
monotone which means that (A4, N E) < u(F) =0 for all n and so Ig(s) =
0 for all such simple functions. Hence Z(f, E) = {0} and so [, fdu =
supZ(f,E) =0. [
Lemma 4.7 If g >0 and [, gdu =0 then

p{x € E : g(x) >0} = 0.
Proof Let A ={z € E: g(z) >0} and A4, = {z € E: g(z) > 1}. Then
the sets A, = EN{z : g(z) > %} € F satisfy Ay C Ay C A3 C ... with
A=, A, Bylemma 4.1 p(A) = lim,, o pu(A,). Using

on(z) = % ifre A,
"1 0 otherwise,

so s, < g on A, we have

ah(An) =14, (sn)
< [, gdp by the definition of [,
< [z 9dp  Thereom 4.4(iii)
=0 by assumption.
So p1(A,) = 0 for all n and hence pu(A) = 0. |

Definition If a property P holds on all points in E \ A for some set A with
p(A) = 0 we say that P holds almost everywhere (1) on E, written as a.e.(j)
on b.

(*It might be that P holds on some of the points of A or that the set of
points on which P does not hold is non-measurable. This is immaterial. But
if p is a complete measure, such as the Lebesgue-Steiltje’s measure pp, then
the situation is simpler. Assume that a property P holds a.e.(ir) on E. The
definition says that the set of points, D say, on which P does not hold can be
covered by a set of measure zero, i.e. there exists A: D C A and p(A) = 0.
Yet if p is complete then D will be measurable of measure zero.

In this section we are not assuming that p is complete.)
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So, for example, Lemma 4.7 can be restated as
Lemma 4.8
If g>0and [,gdp=0 then g =0 a.e.(u) on E.
We can extend Theorem 4.4(ii) as follows.
Theorem 4.9 If g,h : X — RT are F-measurable functions and g < h

a.e.(p) then
[ gdu< [ han
E E
Proof

By assumption there exists a set D C E, of measure zero, such that for
all z € E'\ D we have g(z) < h(x). Let 0 < s < g be a simple, F-measurable
function, written as

N N
s:ZaiXAi, with UAZ-:E.
i=1

=1

The problem here is that we may well not have s < h. Define

. s(z) ifz¢ D
@) = {o ifzeD

= E a”iXAiﬂDc

1=1

which is still a simple, F-measurable function. Then for x € E'\ D we have
s*(z) = s(x) < g(x) < h(z), while for z € D we have s*(z) = 0 < h(x).
Thus s*(z) < h(z) for all z € E.

Note that A; = (A;ND°) U (A, ND), a disjoint union in which case
w(A;) = w(AiND)4+p(A;ND) = pu(4;). But A;nD C Dandsou(A;ND) <
u(D) = 0. Thus u(A;) = u(A; N D°). Hence

N
Ig(s*) = Za,,uA N D)

=1
N
= D> a4
=1



So Ip(s) = Ip(s*) < [, hdp by the definition of integral [,. Thus [, hdpu is
an upper bound for Z(g, E') while f 5 9dp is the least of all upper bounds for
Z(g, E). Hence [, hdp > [, gdp. |
Corollary 4.10

If g,h: X — RY are F-measurable with g = h a.e (u) on E then

/gdu:/hd,u.
E E
Proof

By assumption there exists a set D C F of measure zero such that for
all x € E\ D we have g(z) = h(z). In particular, for these x we have
g(x) < h(x) and h(x) < g(z). So g < h a.e. (u) on E and h < g a.e. (i) on
E. Hence the result follows from two applications of Theorem 4.9. |

So, a function may have its values altered on a set of measure zero without
altering the value of its integral. In particular, by Lemma 4.5 we may assume
that a non-negative integrable function is finite valued.

Example 15 (c.f. Example 13) On ([0, 1], £, i) the function

fz) = 1 if x is rational
)= 0 if & irrational

is 0 a.e.(u) on [0,1]. So



