3 Measurable Functions

Notation A pair (X, F) where F is a o-field of subsets of X is a measurable
space.

If 1 is a measure on F then (X, F, u) is a measure space.

If u(X) < oo then (X, F,u) is a probability space and u a probability
measure. The measure can, and normally is, renormalised such that p(X) =
1.

Definition The extended Borel sets B* of R* is the set of unions of sets from
B with subsets of {—o00, +00}.

I leave it to the student to check that B* is a o-field.
Importantly we have

Proposition 3.1
The o-field B* is the o-field generated in R* by all intervals (¢, +00], ¢ €
R.

Proof

Let G be the o-field generated by these intervals. Then R*\(c, +o00] =
[—00,c] € Gforall c € R. Thus (¢, +oo]N[—o0,d] = (¢,d] € G forall ¢,d € R.
So G must contain the smallest o-field containing (¢, d| for all ¢, d € R, namely
B.

Also G contains {+oo} =(),5;(n,+0o0] and {—oo} =(),~,[—00, —n].

Hence G contains the smallest o-field containing B and {—oo, +00}, that
is, B*. So B* C G.

Trivially each (¢, +o00] = |, (¢,n]U{+00} € B*. So the smallest o-field
containing these (c, +0o] must be contained in any other o-field containing
them, i.e. G C B*.

Hence G = B*. [ |

Obviously the same o-field is generated by the intervals {[c, +o¢], ¢ € R}
or {[—o0,c],c € R} or {[—o0,¢),c € R}.

*For a justification of the following definitions we might look ahead to
how we will integrate functions f : (X, F) — R*. One method is to approx-
imate f by splitting the range of f, that is R, into intervals (a,,a,,1] and
examining the set {x € X : a, < f(x) < ay41}. We would like such sets to
be measurable, i.e. elements of F. So it seems reasonable that we demand
that the pre-images of the intervals (a,,a,11], or the o-field generated by
them, should lie in F.

Definition
A map f: (X, F) — R* is F-measurable if, and only if, f~1(B) € F for
all B € B*.



Special cases: We say f : (R,Lp) — R* is Lebesgue-Stieltjes measurable
and f : (R, B) — R* is Borel measurable.

In general we have

Definition A map f : (X, Fx) — (Y, Fy) between measurable spaces is said
to be measurable with respect to Fx, Fy, if, and only if, f~1(A) € Fx for all
Ae Fy.

(Compare this to the definition of a continuous function between topo-
logical spaces.)

*Note To say that f: (X, F) — R* is F-measurable is equivalent to saying
f: (X, F) — (R* B*) measurable with respect to F,B*. It would be too
restrictive to look only at functions f : (X, F) — (R*, £*) measurable with
respect to F, L*. (The definition of £* should be obvious.) It is shown in an
appendix that £ is strictly larger than B and so L£* is strictly larger than B*.
So if f is measurable with respect to F, L* we are saying that f~'(V) € F
for all V' € L£* which is demanding more than f~1(V) € F just for all V € B*
and so is satisfied by fewer functions.

We want to give a criteria for checking whether a function is F-measurable
that is quicker than looking at f~!(B) for all extended Borel sets. First we
state results concerning preimages: It can be checked by the student that for
any sets A;,i € I we have

F (U Az-) =), o (ﬂ Al) =4 (12
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and f71(A%) = (f71(A))".
Notation If A is a collection of sets then A~ (.A) is the collection of preimages
of each set in A.

We use this notation and (12) in the “tricky” proof of the following.

Lemma 3.2 If h: (X, F) — R* and A is a non-empty collection of subsets
of R*, then

o(h™(A)) = h™H(a(A)).

Proof We first show that o(h~!(A)) C h™'(c(A)) by showing that h=1(c(A))
is a o-field. Let {B;}i>1 € h™'(0(A)) be a countable collection of sets. Then
for all 7 we have that B; = h™'(A;) for some A; € o(A). Since o(A) is a
o-field we have | J,», 4; € 0(A) and so



U = Una)

i>1 i>1

- (ya) by (12),

€ hl(o(A)).

Thus h™'(c(A)) is closed under countable unions. Now take any B,C €
h='(c(A)) so B=h"'(S) and C = h™(T) for some S,T € o(A). Then

B\C = BNC*
= h7H(S)Nh™H(T") by (12),
= h~ 1(SﬂTC) by (12)
= h7I(S\T)
€ h'(c(A)) since o(A) is a o-field.

Hence h™'(c(A)) is a o-field. It obviously contains h~1(A) and so contains
the minimal o-field containing h~'(A), that is, o(h™!(A)) C A (c(A)).

To obtain the reverse set inclusion we look at what sets have a preimage
in o(h™'(A)), hopefully all the sets in o(.A) have a preimage in o(h~'(A)).
Consider now H = {E C R* : h"}(E) € a(h"'(A))}. From (12) we can
quickly check that this is a o-field. It trivially contains A and so o(A) C H.
By the definition of H this means that h=1(c(A)) C o(h™1(A)).

Hence equality. |
Theorem 3.3

The function f: (X,F) — R* is F-measurable if, and only if,

{z: f(x)>c}eF
for all c € R.

Proof Let A be the collection of semi-infinite intervals (¢, +00] for all ¢ € R.
Then by Proposition 3.1 we have that o(A) = B*. So if we start with the
definition of F-measurable we find

B CF O fHo(A))
(

-
iff o(f1(A)) C by Lemma 3.2,
1
f

iff f7'(A) C since F is a o-field,
iff f7'((c,+o0]) CF forall c € R, by definition of G,
it {z:f(z)>cteF foralcelR
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(For students: do check that you understand exactly why, in the proof,
we have o(f~1(A)) C Fiff f~1(A) CF (see Questionl3).)
Notes (i) Theorem 3.3 is often taken as the definition of F-measurable.

(ii) It is easy to show that f is F-measurable if, and only if,

{r : flr)<cteF forallceR
or {x : f(zr)>cteF forallceR
or {z : f(zr)<c}eF forallceR.

Example 10
f (X, F) — R* f =k a constant, possibly +o00, is F-measurable. This
is simply because

et ={ XAesn
In all cases the resulting set is in F.
The next result supplies us with many examples of measurable functions.
Example 11

Let g : (R,Lp) — R be Lp-measurable, f : R — R be continuous and
h:(X,F)— R be F-measurable. Then

(i) f is Lebesque measurable,
(ii) the composite f o g is Lp-measurable,
(iii) the composite f o h is F-measurable.
Proof Note that f and ¢ are finite valued so we need only look at the
preimage of (¢, 00) =J,~,(c,n) € U, the usual topology on R.
(i) Since f is continuous we have that f~*((c,00)) € 4. ButU C B C Lp,
and so

{z: f(z) >c} = f((c,)) € Lp.

(ii) Since g : (R,Lr) — R is Lp-measurable and f~((c,00)) €e U C B
then ¢g7' (f~((c,0))) € Lp. Hence (f o g)"*((c,00)) € Lr and so fo g is
L r-measurable.

(iii) Since h : (X,F) — R is F-measurable and f~!((c,00)) € U C B
then A= (f~1((c,0))) € L and so f o h is Lp-measurable. |
Theorem 3.4

Let f,g: (X, F)— R* be F—measurable functions. Let o, € R. Then



(i) f 4+« and af are F-measurable,

(ii) f? is F-measurable,

(iti) {z € X : f(z) > g(x)} € F,

(vi) {z € X : f(z) = g(2)} € F,

(V) on the set of x for which it is defined, af + (g is F-measurable,
(vi) fg is F-measurable,

(vii) on the set of x for which it is defined, f/g is F-measurable,
(viii) max(f, g) and min(f,g) are F-measurable,

(ix) |f] 1s F-measurable.

Proof
) {reX:flr)+a>c ={re X : flx) >c—a} € Fsince f is
F-measurable. Hence f + «a is F-measurable.

If « =0then {x € X :af(z) >c} =¢if c>0and X if ¢ < 0. In both
cases the set is in F.

Ifa>0then {z € X :af(x) >c}={zreX: f(x) > £} € Fsince fis
F-measurable.

Ifa <Othen {z € X :af(x)>ct={zrecX: f(r) <t} e Fsince fis
F-measurable.

In all cases {zr € X : af(z) > ¢} € F and so af is F-measurable.

(i)

X ife<0
{reX:f(x)>ct=< {reX:flx)>/eyU{zeX: flx) < —/c}
if ¢>0.

In all cases the resulting set is in F.

(iii) Note that for any two numbers ¢, d we have ¢ > d if, and only if, there
exists a rational number r such that ¢ > r > d. Hence

{reX:f@)>g@)}=J{rzeX fl@)>rtn{zecX r>g()}).

reQ

All sets on the right are in F as is the intersection and countable union.
(iv) As in part (iii) we can show that {x € X : g(z) > f(x)} € F. Then

{r € X:f(x)=g)}
= X\({reX:f(x)>g@)}ufreX:gx)>flx)})
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is an element of F.

(v) By part (i) it suffices to prove that f + g is F-measurable. Recall that
(+00) + (—00) is not defined so f + g is defined only on X \ A where

A = {zeX: f(x)==+o0,g(x) = Foo}
= {zeX: f(x)=—g(@)}n{reX: f(x)=+o0}
c F

by Example 10 and part (iv). Then

{reX\A: f(x) +9(x)>c} =X\ A)N{re X f(z)>c—g(r)}

which is in F by (iii).
(vi) Continue with the notation of part (v). Then on X \ A we can mean-
ingfully write
f+9?*-f-¢°

fg= ( ) 5 ,
which is therefore F-measurable, on X \ A, by parts (ii) and (v). On A we
have either f(z) = 400 and g(z) = —o0 or f(z) = —00,g(z) = +00. In
both cases fg is defined with value —oo. Thus {x € A: fg(z) >c} =¢p € F
for all ¢ € R. Hence fg is F-measurable, on X.

(vii) By part (vi) it suffices to prove that 1/g is F-measurable. This is only
defined on X \ B where

B={zeX:g(x)=0} € F

by Example 10. First assume ¢ > 0 then

{xeX\Bzﬁ>c} = {xeX\Bzogg(va%}
= {xEX:O<g(:L')<%}
- {xeX:g(as)<%}\{xeX:g(ﬂﬁ)SO}

which is in F since ¢ is F-measurable. If ¢ < 0 then



{xEX\B:g—>c} = {zeX\B:0<gx)}

U{xeX\B:g(x)<é}

_ {xeX:0<g($)}U{fC€X‘g(x)<%}

which is in F.

(viii) For the max and min we need do no more than observe that

{z : max(f(z),g(x)) >c}={x: f(x)>c}U{z:g(x) >}
{z : min(f(x),g9(z)) >c} ={z: f(x) >c}n{z:g(x) > c}.

(ix) Let f* = max(f,0) and f~ = —min(f,0). (The —ve sign is taken so that
f=>0.) Then f* and f~ are F-measurable by (viii). And so |f| = fT+ f~
is F-measurable by part (v). |

3.1 Sequences of Functions

Let {z,} € R* be a sequence of extended real numbers. We can give an
extended definition of limit in the following.

Definition

lim,, o 2, = ¢ with ¢ finite if, and only if, Ye > 0 IN : |z, — (] < ¢
Vn > N.

lim,, ., x, = +o0 if, and only if, VK >0 dN : x, > K Vn > N.

lim,, .z, = —oc if, and only if, VK <0 dN : x, < K Vn > N.

Recall the definition of sup,,~; =, can be given as a = sup,,>; =, if @ > 1,
for all n and given any ¢ > 0 there exists N > 1 such that o — e < zy < a.
Of course, implicit in this definition is that sup,,~, =, is finite. We can extend

to when sup,,; ¥, = +00 or —oo. Of course, in the first case we do not have
to check that +o00 is an upper bound since that is necessarily true and in the

second case the demand that —oo means that z,, = —oo for all n.
Definition

Sup,,>1 Tn = +o00 if, and only if, VK > 0 N : zy > K.

Sup,,>1 n = —oo if, and only if, Vn > 1, x, = —o0.

inf, >y x,, = o0 if, and only if, Vn > 1, z,, = 4-o00.
inf,,>1 z, = —oo if, and only if VK < 0 IN : zy < K.



Of course a sequence need not have a limit. But we can define forms of
limit that exist for all sequences.

Definition

limsupz, = lim (supx,).

n—00 n—=00 \ r>n

liminfz,, = lim (inf xr>.
n—oo n—oo \ r>n
We can see that these always exist in the following way. We note that
{xr}TZn—i—l g {IT}TZH and SO

sup z, < sup .

r>n+l ren
Thus {sup,-, . }»>1 is a decreasing sequence and because of our extended
definition of limit such a series converges. Either the sequence is bounded be-
low when it converges to a finite value, namely the infimum of the sequence,
or it is not bounded below when it converges to —oo by the extended defini-
tion above, which again is the infimum of the sequence. So in both cases we

find that

lim supx,, = inf (Sup xr) .

n—00 n>l \ p>p

In the same way we have that {inf,>, z,},>1 is an increasing sequence.
This leads to

liminfz,, = sup (inf mr) )

n—o0 n>1 \r2>n
We then have the important result
Theorem 3.5
The limit lim,,_, o x,, exists if, and only if, liminf, . x,, = limsup,, . ©p.
The common value (even if +00 or —o0) is the value of the limit.
*Proof (Not given in lecture.)
(=) Assume lim,, ., x,, exists and is finite, ¢ say. Then

Ve>03dAN : |z, — ¢ <e VYn>N

and so { — e < x, < { + ¢ for such n. That is, { — ¢ is a lower bound for
{z,}y>n for any n > N and thus ¢ — ¢ < inf{z,},>, = inf,>, z,. But also,
inf,>, z, <z, <l+¢e. So



E—sgigfxr<€+€ Vn > N.

(Note how a strict inequality has changed to a <). This shows that the defini-
tion of limit is satisfied for the sequence {inf,>, z,},>1 and so lim,,_, (inf,>, z,)
= (. Similarly

(—e<supx, <l+e¢ Vn> N

r>n
leading to lim,, .o (sUp,s, x,) = £.

Assume lim,,_, x,, exists and is +o0o. Then

VK >04dN :x, > K Vn > N.

In particular K < inf,, «, for such n. (Obviously sup,, =, = +00 and so
lim,, o0 (SUP, 5, Z,) = +00) But now we have seen that the extended defini-
tion of limit is satisfied for the sequence {inf,>, x, }, and so lim,, . (inf,>, x,)
= +400.

The same proof holds when lim,,_, ., x,, exists and is —oo.

(<) Assume now that liminf, .., x, = limsup,,_, . x, with a finite limit,
¢, say. Then liminf, .., z, = ¢ means that

Ve >0 dNy :

igfxr—f‘ <eVn > Nj.
In particular
xn2i1>1fxr>£—€ (13)

for such n.
Similarly lim sup,,_,., =, = ¢ means that

Ve >0 dNy: [supx, — L] < e Vn > N,.
r>n
In particular
T, <supx, < l+¢ (14)
r>n

for such n. Let N = max(NNy, Ny) then for all n > N we can combine (13)
and (14) to get { — e < x, < {+ ¢ and so lim,, ., x, = /.

Assume now that liminf,, . z, = limsup,,_,. #, = +00. Then



VK>OE|NZiI>1fZ‘T>KVnZN

and in particular x,, > inf,>, x, > K Vn > N and so lim,,_,, x, = +00.
A similar proof holds when the common limit is —oo. |

Note For any sequence {z,} C R* we have sup,~;z, = —inf,>1(—z,) and
sup,,»; T, > c if, and only if, there exists ¢ : x; > c.

(*Proof is left to student. For the second result note first that sup, -, 2, =
400 iff VK > 0 3N : zy > K. Choose K = ¢ to get the result. Otherwise
sup,,~; &» = ¢ a finite value when we know that given any ¢ > 0 there exists
N > 1 such that £ — e < zy < £. Simply choose ¢ so that £ —e > ¢, perhaps
e = (0 —c)/2, to get the result.).

Let f,, : (X, F) — R* be a sequence of F-measurable functions and define
sup,,> fn and inf,,>; f, pointwise, that is, for all z € X define (sup,,>; fn)(x)
= Sup,,>1 fu(x) and (inf,>; f,)(z) = inf>; fu(2) .

Theorem 3.6

i) The functions sup,,>; fn and inf,>1 f, are F-measurable functions.

ii) The functions liminf, ., f, and imsup,,_, ., f, are F-measurable functions.
iii) The set of x € X for which lim,,_., f,(z) ezists is a measurable set.

iv) On the set of x for which lim, . f,.(x) exists the limit function is F-
measurable.

Proof

i) Let ¢ € R. From the note above we have

{a: ssup fn(x) > c} = {x: there exists ¢ for which f;(z) > ¢}

= U{a:fl(:c) >cteF

i>1
since each f; is F-measurable and F is closed under countable unions. Hence

sup,,>; fn is F-measurable.

For the infimum we use the note again to deduce that inf,,>; f,, = —sup,,>;
(—fn) is F-measurable.

ii) As observed above we have
liminf f,, = sup (inf fr) and limsupf, = inf (sup fr) .
n—00 n>1 r>n n— o0 n>1 r>n

So part (i) gives the result for liminf f,, and limsupf,,.

n—00 n—oo
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iii) By Theorem 3.5 we have
{:p € X : lim f,(x) exists} = {x € X :liminff,(z) = limsupfn(w)} :

So our set is that of points at which two F-measurable functions are
equal. By Theorem 3.4(vi) such a set is an element of F.

iv) Let A = {2 € X : lim, . fn(x) exists} then

{x € A: lim f,(z) > c}

= {:E € A: liminff,(z) > c} since liminf f,, = lim f, on A,

= AN {x € X : liminff,(z) > c} since liminf f,, defined on all of X,

n—oo n—oo
e F,

using parts (ii) and (iii).

|
Note This limit result for measurable functions does not necessarily hold for
continuous functions even though continuous functions are measurable. For
example, f,(x) = 2™ are continuous on [0, 1] yet inf f,,(z) =0 for 0 <z < 1
and 1 when = 1, and so not continuous.
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