
3 Measurable Functions

Notation A pair (X,F) where F is a σ-field of subsets of X is a measurable
space.

If µ is a measure on F then (X,F , µ) is a measure space.
If µ(X) < ∞ then (X,F , µ) is a probability space and µ a probability

measure. The measure can, and normally is, renormalised such that µ(X) =
1.

Definition The extended Borel sets B∗ of R∗ is the set of unions of sets from
B with subsets of {−∞, +∞}.

I leave it to the student to check that B∗ is a σ-field.

Importantly we have

Proposition 3.1
The σ-field B∗ is the σ-field generated in R∗ by all intervals (c, +∞], c ∈

R.

Proof
Let G be the σ-field generated by these intervals. Then R∗\(c, +∞] =

[−∞, c] ∈ G for all c ∈ R. Thus (c, +∞]∩[−∞, d] = (c, d] ∈ G for all c, d ∈ R.
So G must contain the smallest σ-field containing (c, d] for all c, d ∈ R, namely
B.

Also G contains {+∞} =
⋂

n≥1(n, +∞] and {−∞} =
⋂

n≥1[−∞,−n].
Hence G contains the smallest σ-field containing B and {−∞, +∞}, that

is, B∗. So B∗ ⊆ G.

Trivially each (c, +∞] =
⋃

n≥1(c, n]∪{+∞} ∈ B∗. So the smallest σ-field
containing these (c, +∞] must be contained in any other σ-field containing
them, i.e. G ⊆ B∗.

Hence G = B∗. ¥
Obviously the same σ-field is generated by the intervals {[c, +∞], c ∈ R}

or {[−∞, c], c ∈ R} or {[−∞, c), c ∈ R}.
*For a justification of the following definitions we might look ahead to

how we will integrate functions f : (X,F) → R∗. One method is to approx-
imate f by splitting the range of f , that is R, into intervals (aν , aν+1] and
examining the set {x ∈ X : aν < f(x) ≤ aν+1}. We would like such sets to
be measurable, i.e. elements of F . So it seems reasonable that we demand
that the pre-images of the intervals (aν , aν+1], or the σ-field generated by
them, should lie in F .

Definition
A map f : (X,F) → R∗ is F-measurable if, and only if, f−1(B) ∈ F for

all B ∈ B∗.
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Special cases: We say f : (R,LF ) → R∗ is Lebesgue-Stieltjes measurable
and f : (R,B) → R∗ is Borel measurable.

In general we have

Definition A map f : (X,FX) → (Y,FY ) between measurable spaces is said
to be measurable with respect to FX ,FY , if, and only if, f−1(A) ∈ FX for all
A ∈ FY .

(Compare this to the definition of a continuous function between topo-
logical spaces.)

*Note To say that f : (X,F) → R∗ is F-measurable is equivalent to saying
f : (X,F) → (R∗,B∗) measurable with respect to F ,B∗. It would be too
restrictive to look only at functions f : (X,F) → (R∗,L∗) measurable with
respect to F ,L∗. (The definition of L∗ should be obvious.) It is shown in an
appendix that L is strictly larger than B and so L∗ is strictly larger than B∗.
So if f is measurable with respect to F ,L∗ we are saying that f−1(V ) ∈ F
for all V ∈ L∗ which is demanding more than f−1(V ) ∈ F just for all V ∈ B∗
and so is satisfied by fewer functions.

We want to give a criteria for checking whether a function is F -measurable
that is quicker than looking at f−1(B) for all extended Borel sets. First we
state results concerning preimages: It can be checked by the student that for
any sets Ai, i ∈ I we have

f−1

(⋃
i∈I

Ai

)
=

⋃
i∈I

f−1(Ai), f−1

(⋂
i∈I

Ai

)
=

⋂
i∈I

f−1(Ai) (12)

and f−1(Ac) = (f−1(A))
c
.

Notation If A is a collection of sets then h−1(A) is the collection of preimages
of each set in A.

We use this notation and (12) in the “tricky” proof of the following.

Lemma 3.2 If h : (X,F) → R∗ and A is a non-empty collection of subsets
of R∗, then

σ(h−1(A)) = h−1(σ(A)).

Proof We first show that σ(h−1(A)) ⊆ h−1(σ(A)) by showing that h−1(σ(A))
is a σ-field. Let {Bi}i≥1 ⊆ h−1(σ(A)) be a countable collection of sets. Then
for all i we have that Bi = h−1(Ai) for some Ai ∈ σ(A). Since σ(A) is a
σ-field we have

⋃
i≥1 Ai ∈ σ(A) and so
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⋃
i≥1

Bi =
⋃
i≥1

(h−1(Ai))

= h−1

(⋃
i≥1

Ai

)
by (12),

∈ h−1(σ(A)).

Thus h−1(σ(A)) is closed under countable unions. Now take any B, C ∈
h−1(σ(A)) so B = h−1(S) and C = h−1(T ) for some S, T ∈ σ(A). Then

B \ C = B ∩ Cc

= h−1(S) ∩ h−1(T c) by (12),

= h−1(S ∩ T c) by (12)

= h−1(S \ T )

∈ h−1(σ(A)) since σ(A) is a σ-field.

Hence h−1(σ(A)) is a σ-field. It obviously contains h−1(A) and so contains
the minimal σ-field containing h−1(A), that is, σ(h−1(A)) ⊆ h−1(σ(A)).

To obtain the reverse set inclusion we look at what sets have a preimage
in σ(h−1(A)), hopefully all the sets in σ(A) have a preimage in σ(h−1(A)).
Consider now H = {E ⊆ R∗ : h−1(E) ∈ σ(h−1(A))}. From (12) we can
quickly check that this is a σ-field. It trivially contains A and so σ(A) ⊆ H.
By the definition of H this means that h−1(σ(A)) ⊆ σ(h−1(A)).

Hence equality. ¥
Theorem 3.3

The function f : (X,F) → R∗ is F -measurable if, and only if,

{x : f(x) > c} ∈ F
for all c ∈ R.

Proof Let A be the collection of semi-infinite intervals (c, +∞] for all c ∈ R.
Then by Proposition 3.1 we have that σ(A) = B∗. So if we start with the
definition of F -measurable we find

f−1(B∗) ⊆ F iff f−1(σ(A)) ⊆ F
iff σ(f−1(A)) ⊆ F by Lemma 3.2,

iff f−1(A) ⊆ F since F is a σ-field,

iff f−1((c, +∞]) ⊆ F for all c ∈ R, by definition of G,

iff {x : f(x) > c} ∈ F for all c ∈ R.
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¥
(For students: do check that you understand exactly why, in the proof,

we have σ(f−1(A)) ⊆ F iff f−1(A) ⊆ F (see Question13).)

Notes (i) Theorem 3.3 is often taken as the definition of F -measurable.
(ii) It is easy to show that f is F -measurable if, and only if,

{x : f(x) < c} ∈ F for all c ∈ R
or {x : f(x) ≥ c} ∈ F for all c ∈ R
or {x : f(x) ≤ c} ∈ F for all c ∈ R.

Example 10
f : (X,F) → R∗, f ≡ κ a constant, possibly ±∞, is F -measurable. This

is simply because

{x : f(x) > c} =

{
X if c < κ
φ if c ≥ κ.

In all cases the resulting set is in F .

The next result supplies us with many examples of measurable functions.

Example 11

Let g : (R,LF ) → R be LF -measurable, f : R → R be continuous and
h : (X,F) → R be F-measurable. Then

(i) f is Lebesgue measurable,
(ii) the composite f ◦ g is LF -measurable,
(iii) the composite f ◦ h is F -measurable.

Proof Note that f and g are finite valued so we need only look at the
preimage of (c,∞) =

⋃
n≥1(c, n) ∈ U , the usual topology on R.

(i) Since f is continuous we have that f−1((c,∞)) ∈ U . But U ⊆ B ⊆ LF ,
and so

{x : f(x) > c} = f−1((c,∞)) ∈ LF .

(ii) Since g : (R,LF ) → R is LF -measurable and f−1((c,∞)) ∈ U ⊆ B
then g−1 (f−1((c,∞))) ∈ LF . Hence (f ◦ g)−1((c,∞)) ∈ LF and so f ◦ g is
LF -measurable.

(iii) Since h : (X,F) → R is F -measurable and f−1((c,∞)) ∈ U ⊆ B
then h−1 (f−1((c,∞))) ∈ LF and so f ◦ h is LF -measurable. ¥
Theorem 3.4

Let f, g : (X,F) → R∗ be F−measurable functions. Let α, β ∈ R. Then
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(i) f + α and αf are F -measurable,

(ii) f 2 is F -measurable,

(iii) {x ∈ X : f(x) > g(x)} ∈ F ,

(vi) {x ∈ X : f(x) = g(x)} ∈ F ,

(v) on the set of x for which it is defined, αf + βg is F -measurable,

(vi) fg is F -measurable,

(vii) on the set of x for which it is defined, f/g is F -measurable,

(viii) max(f, g) and min(f, g) are F -measurable,

(ix) |f | is F -measurable.

Proof
(i) {x ∈ X : f(x) + α > c} = {x ∈ X : f(x) > c − α} ∈ F since f is
F -measurable. Hence f + α is F -measurable.

If α = 0 then {x ∈ X : αf(x) > c} = φ if c ≥ 0 and X if c < 0. In both
cases the set is in F .

If α > 0 then {x ∈ X : αf(x) > c} = {x ∈ X : f(x) > c
α
} ∈ F since f is

F -measurable.
If α < 0 then {x ∈ X : αf(x) > c} = {x ∈ X : f(x) < c

α
} ∈ F since f is

F -measurable.
In all cases {x ∈ X : αf(x) > c} ∈ F and so αf is F -measurable.

(ii)

{x ∈ X : f 2(x) > c} =





X if c < 0

{x ∈ X : f(x) >
√

c} ∪ {x ∈ X : f(x) < −√c}
if c ≥ 0.

In all cases the resulting set is in F .

(iii) Note that for any two numbers c, d we have c > d if, and only if, there
exists a rational number r such that c > r > d. Hence

{x ∈ X : f(x) > g(x)} =
⋃

r∈Q
({x ∈ X : f(x) > r} ∩ {x ∈ X : r > g(x)}) .

All sets on the right are in F as is the intersection and countable union.

(iv) As in part (iii) we can show that {x ∈ X : g(x) > f(x)} ∈ F . Then

{x ∈ X : f(x) = g(x)}
= X \ ({x ∈ X : f(x) > g(x)} ∪ {x ∈ X : g(x) > f(x)})
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is an element of F .

(v) By part (i) it suffices to prove that f + g is F -measurable. Recall that
(+∞) + (−∞) is not defined so f + g is defined only on X \ A where

A = {x ∈ X : f(x) = ±∞, g(x) = ∓∞}
= {x ∈ X : f(x) = −g(x)} ∩ {x ∈ X : f(x) = ±∞}
∈ F

by Example 10 and part (iv). Then

{x ∈ X \ A : f(x) + g(x) > c} = (X \ A) ∩ {x ∈ X : f(x) > c− g(x)}

which is in F by (iii).

(vi) Continue with the notation of part (v). Then on X \ A we can mean-
ingfully write

fg =
(f + g)2 − f 2 − g2

2
,

which is therefore F -measurable, on X \ A, by parts (ii) and (v). On A we
have either f(x) = +∞ and g(x) = −∞ or f(x) = −∞, g(x) = +∞. In
both cases fg is defined with value −∞. Thus {x ∈ A : fg(x) > c} = φ ∈ F
for all c ∈ R. Hence fg is F -measurable, on X.

(vii) By part (vi) it suffices to prove that 1/g is F -measurable. This is only
defined on X \B where

B = {x ∈ X : g(x) = 0} ∈ F
by Example 10. First assume c > 0 then

{
x ∈ X \B :

1

g(x)
> c

}
=

{
x ∈ X \B : 0 ≤ g(x) <

1

c

}

=

{
x ∈ X : 0 < g(x) <

1

c

}

=

{
x ∈ X : g(x) <

1

c

}
\ {x ∈ X : g(x) ≤ 0}

which is in F since g is F -measurable. If c ≤ 0 then
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{
x ∈ X \B :

1

g(x)
> c

}
= {x ∈ X \B : 0 ≤ g(x)}

∪
{

x ∈ X \B : g(x) <
1

c

}

= {x ∈ X : 0 < g(x)} ∪
{

x ∈ X : g(x) <
1

c

}

which is in F .

(viii) For the max and min we need do no more than observe that

{x : max(f(x), g(x)) > c} = {x : f(x) > c} ∪ {x : g(x) > c}
{x : min(f(x), g(x)) > c} = {x : f(x) > c} ∩ {x : g(x) > c}.

(ix) Let f+ = max(f, 0) and f− = −min(f, 0). (The−ve sign is taken so that
f− ≥ 0.) Then f+ and f− are F -measurable by (viii). And so |f | = f+ + f−

is F -measurable by part (v). ¥

3.1 Sequences of Functions

Let {xn} ⊆ R∗ be a sequence of extended real numbers. We can give an
extended definition of limit in the following.

Definition

limn→∞ xn = ` with ` finite if, and only if, ∀ε > 0 ∃N : |xn − `| < ε
∀n ≥ N .

limn→∞ xn = +∞ if, and only if, ∀K > 0 ∃N : xn > K ∀n ≥ N .

limn→∞ xn = −∞ if, and only if, ∀K < 0 ∃N : xn < K ∀n ≥ N .

Recall the definition of supn≥1 xn can be given as α = supn≥1 xn if α ≥ xn

for all n and given any ε > 0 there exists N ≥ 1 such that α− ε < xN ≤ α.
Of course, implicit in this definition is that supn≥1 xn is finite. We can extend
to when supn≥1 xn = +∞ or −∞. Of course, in the first case we do not have
to check that +∞ is an upper bound since that is necessarily true and in the
second case the demand that −∞ means that xn = −∞ for all n.

Definition

supn≥1 xn = +∞ if, and only if, ∀K > 0 ∃N : xN > K.

supn≥1 xn = −∞ if, and only if, ∀n ≥ 1, xn = −∞.

infn≥1 xn = +∞ if, and only if, ∀n ≥ 1, xn = +∞.

infn≥1 xn = −∞ if, and only if ∀K < 0 ∃N : xN < K.
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Of course a sequence need not have a limit. But we can define forms of
limit that exist for all sequences.

Definition

lim sup
n→∞

xn = lim
n→∞

(
sup
r≥n

xr

)
.

lim inf
n→∞

xn = lim
n→∞

(
inf
r≥n

xr

)
.

We can see that these always exist in the following way. We note that
{xr}r≥n+1 ⊆ {xr}r≥n and so

sup
r≥n+1

xr ≤ sup
r≥n

xr.

Thus {supr≥n xr}n≥1 is a decreasing sequence and because of our extended
definition of limit such a series converges. Either the sequence is bounded be-
low when it converges to a finite value, namely the infimum of the sequence,
or it is not bounded below when it converges to −∞ by the extended defini-
tion above, which again is the infimum of the sequence. So in both cases we
find that

lim sup
n→∞

xn = inf
n≥1

(
sup
r≥n

xr

)
.

In the same way we have that {infr≥n xr}n≥1 is an increasing sequence.
This leads to

lim inf
n→∞

xn = sup
n≥1

(
inf
r≥n

xr

)
.

We then have the important result

Theorem 3.5

The limit limn→∞ xn exists if, and only if, lim infn→∞ xn = lim supn→∞ xn.
The common value (even if +∞ or −∞) is the value of the limit.

*Proof (Not given in lecture.)
(⇒) Assume limn→∞ xn exists and is finite, ` say. Then

∀ε > 0 ∃N : |xn − `| < ε ∀n ≥ N

and so ` − ε < xn < ` + ε for such n. That is, ` − ε is a lower bound for
{xr}r≥n for any n ≥ N and thus ` − ε ≤ inf{xr}r≥n = infr≥n xr. But also,
infr≥n xr ≤ xn < ` + ε. So
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`− ε ≤ inf
r≥n

xr < ` + ε ∀n ≥ N.

(Note how a strict inequality has changed to a ≤). This shows that the defini-
tion of limit is satisfied for the sequence {infr≥n xr}n≥1 and so limn→∞(infr≥n xr)
= `. Similarly

`− ε < sup
r≥n

xr ≤ ` + ε ∀n ≥ N

leading to limn→∞(supr≥n xr) = `.

Assume limn→∞ xn exists and is +∞. Then

∀K > 0 ∃N : xn > K ∀n ≥ N.

In particular K ≤ infr≥n xr for such n. (Obviously supr≥n xr = +∞ and so
limn→∞(supr≥n xr) = +∞) But now we have seen that the extended defini-
tion of limit is satisfied for the sequence {infr≥n xr}n and so limn→∞(infr≥n xr)
= +∞.

The same proof holds when limn→∞ xn exists and is −∞.

(⇐) Assume now that lim infn→∞ xn = lim supn→∞ xn with a finite limit,
`, say. Then lim infn→∞ xn = ` means that

∀ε > 0 ∃N1 :

∣∣∣∣inf
r≥n

xr − `

∣∣∣∣ < ε ∀n ≥ N1.

In particular

xn ≥ inf
r≥n

xr > `− ε (13)

for such n.
Similarly lim supn→∞ xn = ` means that

∀ε > 0 ∃N2 :

∣∣∣∣sup
r≥n

xr − `

∣∣∣∣ < ε ∀n ≥ N2.

In particular

xn ≤ sup
r≥n

xr < ` + ε (14)

for such n. Let N = max(N1, N2) then for all n ≥ N we can combine (13)
and (14) to get `− ε < xn < ` + ε and so limn→∞ xn = `.

Assume now that lim infn→∞ xn = lim supn→∞ xn = +∞. Then
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∀K > 0 ∃N : inf
r≥n

xr > K ∀n ≥ N

and in particular xn ≥ infr≥n xr > K ∀n ≥ N and so limn→∞ xn = +∞.
A similar proof holds when the common limit is −∞. ¥

Note For any sequence {xn} ⊆ R∗ we have supn≥1 xn = − infn≥1(−xn) and
supn≥1 xn > c if, and only if, there exists i : xi > c.

(*Proof is left to student. For the second result note first that supn≥1 xn =
+∞ iff ∀K > 0 ∃N : xN > K. Choose K = c to get the result. Otherwise
supn≥1 xn = ` a finite value when we know that given any ε > 0 there exists
N ≥ 1 such that `− ε < xN ≤ `. Simply choose ε so that `− ε ≥ c, perhaps
ε = (`− c)/2, to get the result.).

Let fn : (X,F) → R∗ be a sequence of F -measurable functions and define
supn≥1 fn and infn≥1 fn pointwise, that is, for all x ∈ X define (supn≥1 fn)(x)
= supn≥1 fn(x) and (infn≥1 fn)(x) = infn≥1 fn(x) .

Theorem 3.6

i) The functions supn≥1 fn and infn≥1 fn are F -measurable functions.

ii) The functions lim infn→∞ fn and lim supn→∞ fn are F -measurable functions.

iii) The set of x ∈ X for which limn→∞ fn(x) exists is a measurable set.

iv) On the set of x for which limn→∞ fn(x) exists the limit function is F -
measurable.

Proof

i) Let c ∈ R. From the note above we have

{
x : sup

n≥1
fn(x) > c

}
= {x : there exists i for which fi(x) > c}

=
⋃
i≥1

{x : fi(x) > c} ∈ F

since each fi is F -measurable and F is closed under countable unions. Hence
supn≥1 fn is F -measurable.

For the infimum we use the note again to deduce that infn≥1 fn =− supn≥1

(−fn) is F -measurable.

ii) As observed above we have

lim inf
n→∞

fn = sup
n≥1

(
inf
r≥n

fr

)
and lim sup

n→∞
fn = inf

n≥1

(
sup
r≥n

fr

)
.

So part (i) gives the result for lim inf
n→∞

fn and lim sup
n→∞

fn.
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iii) By Theorem 3.5 we have

{
x ∈ X : lim

n→∞
fn(x) exists

}
=

{
x ∈ X : lim inf

n→∞
fn(x) = lim sup

n→∞
fn(x)

}
.

So our set is that of points at which two F -measurable functions are
equal. By Theorem 3.4(vi) such a set is an element of F .

iv) Let A = {x ∈ X : limn→∞ fn(x) exists} then

{
x ∈ A : lim

n→∞
fn(x) > c

}

=
{

x ∈ A : lim inf
n→∞

fn(x) > c
}

since lim inf
n→∞

fn = lim
n→∞

fn on A,

= A ∩
{

x ∈ X : lim inf
n→∞

fn(x) > c
}

since lim inf
n→∞

fn defined on all of X,

∈ F ,

using parts (ii) and (iii).
¥

Note This limit result for measurable functions does not necessarily hold for
continuous functions even though continuous functions are measurable. For
example, fn(x) = xn are continuous on [0, 1] yet inf fn(x) = 0 for 0 ≤ x < 1
and 1 when x = 1, and so not continuous.
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