
Appendix to Notes 8 (b)

Spaces of Integrable functions
Definition On a vector space V over R a norm is a function ||.|| : V → R
satisfying, for all x, y ∈ V ,

(i) ||x|| ≥ 0 and equals 0 if, and only if, x = 0,
(ii) ||ax|| = |a|||x|| for all real numbers a,
(iii) ||x + y|| ≤ ||x||+ ||y||.
Define

L1(µ) =

{
f :

∫

X

|f |dµ < ∞
}

with ||f ||1 =

∫

X

|f |dµ

and, in general,

Lp(µ) =

{
f :

∫

X

|f |pdµ < ∞
}

with ||f ||p =

(∫

X

|f |pdµ

)1/p

,

as subsets of all measurable functions.
We have to first check that these spaces are vector spaces over R, only

then can we check if the ||.||1 and ||.||p are norms. So we have to check that
if f, g are from our set and a, b ∈ R then af + bg is in our set. That L1(µ) is
a vector space follows from

|af + bg| ≤ |a||f |+ |b||g|.
In general we use

|af + bg|p ≤ (|a||f |+ |b||g|)p

≤
{

(2|a||f |)p if |a||f | ≥ |b||g|
(2|b||g|)p if |b||g| ≥ |a||f |

= 2p max((|a||f |)p, (|b||g|)p)

≤ 2p((|a||f |)p + (|b||g|)p).

So if f, g ∈ Lp(µ) then

∫

X

|af + bg|pdµ ≤ 2p

(
|a|p

∫

X

|f |pdµ + |b|p
∫

X

|g|pdµ

)
< ∞

and so af + bg ∈ Lp(µ).
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In fact we have to look upon Lp(µ) as spaces of equivalence classes
where the relation is given by f ∼ g when f = g a.e.(µ) on X. Of course,
if ||f ||1 = 0 or ||f ||p = 0 then f = 0 a.e.(µ), but the set of all such f is an
equivalence class and thus just one element in this interpretation of L1(µ)
and Lp(µ). This was exactly what was reuired for a norm function. So it is
not meaningful, when considering a “function” from L1(µ) or Lp(µ), to ask
for the value of that function at a given point. We only ever deal with a
representative of an equivalence class and we can change the representative
on a set of measure zero if and when necessary. Part (ii) of the definition of
a norm function is obviously satisfied for ||.||1 and ||.||p so we just have to
check part (iii).

Lemma 1 For reals a, b > 0 and 0 < t < 1 we have

atb1−t ≤ ta + (1− t)b.

Proof
If w > 1 and t < 1 then

wt − 1t =

∫ w

1

d(xt) = t

∫ w

1

xt−1dx

≤ t

∫ w

1

dx = t(w − 1). (1)

If a > b set w = a/b to get

(a

b

)t

− 1 ≤ t
(a

b
− 1

)
,

so

atb1−t ≤ ta + (1− t)b.

If b ≥ a use w1−t − 1 ≤ (1− t)(w − 1) which follows from (1) on replacing t
by 1− t, valid since 1− t < 1. ¥
Lemma 2 Let 1 ≤ p < ∞ and set 1/q = 1−1/p. If f ∈ Lp(µ) and g ∈ Lq(µ)
then fg ∈ L1(µ) and

||fg||1 =

∫

X

|f ||g|dµ ≤ ||f ||p||g||q
Proof Apply Lemma 1 with

a =
|f |p
||f ||pp and b =

|g|q
||g||qq
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and t = 1/p. Then

|f |
||f ||p

|g|
||g||q ≤

|f |p
p||f ||pp +

|g|q
q||g||qq .

Integrate over X to get

1

||f ||p||g||q

∫

X

|f ||g|dµ ≤ 1

p||f ||pp

∫

X

|f |pdµ +
1

q||g||qq

∫

X

|g|qdµ

=
||f ||pp
p||f ||pp +

||g||qq
q||g||qq

=
1

p
+

1

q
= 1

¥
Lemma 3 If f, g ∈ Lp(µ) then

||f + g||p ≤ ||f ||p + ||g||p.
Proof By first applying the triangle inequality

∫

X

|f + g|pdµ ≤
∫

X

|f ||f + g|p−1dµ +

∫

X

|g||f + g|p−1dµ

≤
(∫

X

|f |pdµ

)1/p (∫

X

(|f + g|p−1
)q

dµ

)1/q

+

(∫

X

|g|pdµ

)1/p (∫

X

(|f + g|p−1
)q

dµ

)1/q

= (||f ||p + ||g||p)
(∫

X

|f + g|pdµ

)1/q

since q(p− 1) = p.

Hence, on rearranging,

(∫

X

|f + g|pdµ

)1−1/q

≤ ||f ||p + ||g||p,

and the left hand side equals ||f + g||p since 1− 1/q = 1/p. ¥
Definition Let (V, ||.||) be a normed space. A Cauchy sequence {xn} satisfies

∀ε > 0,∃N ≥ 1,∀m,n ≥ N, |xm − xn| < ε.

We say that (V, ||.||) is complete if every Cauchy sequence is convergent.
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It can be shown that R with the usual distance function is complete.

Theorem 1

L1(µ) is complete.

Proof
Let {fn} be a Cauchy sequence in L1(µ). We need show that limn→∞ fn

exists and, calling it f , that f ∈ L1(µ) and ||fn − f ||1 → 0 as n →∞.
By definition of a Cauchy sequence we have that, for all ε > 0 there exists

N such that ||fm − fn||1 < ε for all m,n ≥ N . We will apply this with a
sequence of εk such that

∑
k εk < ∞. In particular , εk = 1/4k. So there

exists Nk such that ||fm− fn||1 < 1/4k for all m,n ≥ Nk. And we can ensure
that N1 < N2 < N3 < ... .

Set gk = fNk
, so ||gm − gn||1 < 1/4n for all m ≥ n. In particular

∫

X

|gm − gn|dµ < 1/4n.

Thus gm − gn is small on average. Though it can be large it cannot be large
for too many x. (This is the idea behind the Chebychev inequality.)

Claim limn→∞ gn exists a.e.(µ).
The idea is to write hk = gk − gk−1 with h1 = g1 so that gk =

∑k
j=1 hj.

The hope then is to find a sequence of sets E1 ⊇ E2 ⊇ E3 ⊇ ... such that
outside each En the series

∑∞
j=1 hjconverges. The proof of convergence is by

the comparison test. We will find that the smaller we take En the larger we
have to take the comparing series. (This just represents the fact that the
convergence of the series need not be uniform across X.) Nonetheless we
hope that µ

(⋂
n≥1 En

)
= 0 so that we get convergence a.e.(µ).

Let n ≥ 1 be given. Define

En =
{

x : |hj(x)| > n

2j
for some j ≥ 1

}

=
{

x : |gj(x)− gj−1(x)| > n

2j
for some j ≥ 1

}

=
⋃
j≥1

{
x : |gj(x)− gj−1(x)| > n

2j

}

=
⋃
j≥1

En,j, say.

Then µ(En) ≤ ∑
j≥1 µ(En,j) and
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n

2j
µ(En,j) ≤

∫

En,j

|gj − gj−1|dµ

≤
∫

X

|gj − gj−1|dµ

<
1

4j−1
.

Hence µ(En,j) ≤ 4/2jn and so µ(En) ≤ ∑
j≥1 4/2jn = 4/n. Thus µ(

(⋂
n≥1 En

)
=

0.
So, for all x /∈ En we have |hj(x)| ≤ n/2j for all j in which case |gk(x)−

gl(x)| < n/2l for all k ≥ l. The sequence {gk(x)}k is a Cauchy sequence
in R and so converges. Hence for all x /∈ ⋂

n≥1 En we have that {gk(x)}k

converges, that is {gk}k converges a.e. (µ) on X.
Let E =

⋂
n≥1 En. Define

f(x) =

{
limk→∞ gk(x) for x ∈ X \ E
0 for x ∈ E.

Then go back, and for each fn choose a function from the same equivalence
class that is zero on E (possible since µ(E) = 0) and relabel as fn. Hence
f(x) = limk→∞ gk(x) = limk→∞ fNk

(x) for all x ∈ X. Though we have found
pointwise limit for a subsequence of {fn} it would be too much to expect
that f would be the pointwise limit of the sequence {fn}. Yet we should be
able to show that f is the limit “on average”, i.e. that ||fn − f ||1 → 0 as
n → ∞. Before we do this we need know that we can calculate ||fn − f ||1,
that is, we need to know that f ∈ L1(µ)

Define h =
∑

k≥1 |hk| which converges for all x /∈ E. Define hk(x) = 0
for x ∈ E for all k ≥ 1. So then the series converges for all x. Then, by the
Monotonic Convergence Theorem,

∫

X

hdµ =
∑

k≥1

∫

X

|hk|dµ

=

∫

X

|f1|dµ +
∑

k≥2

∫

X

|gk − gk−1|dµ

≤ ||f1||1 +
∑

k≥2

1

4k−1

= ||f1||1 + C, say, which is finite.

Hence h is integrable. Note that for each k ≥ 1 we have
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|gk| =
∣∣∣∣∣

k∑
j=1

hj

∣∣∣∣∣ ≤
k∑

j=1

|hj| ≤ h

and so

|f | = lim
k→∞

|gk| ≤ h.

Theus we have, by Corollary 4.18, that f is integrable, i.e. f ∈ L1(µ).
Next

|gk − f | ≤ |gk|+ |f | ≤ 2h.

So by the dominated convergence theorem,

lim
k→∞

∫

X

|gk − f |dµ =

∫

X

lim
k→∞

|gk − f |dµ = 0,

that is, limk→∞ ||gk − f ||1 = 0.

Finally let ε > 0 be given. We are told that {fn} is a Cauchy sequence
so we can find N such that ||fn− fm||1 < ε for all n,m > N . So for Nk > N
we have ||fNk

− fm||1 < ε that is ||gk − fm||1 < ε. Let k → ∞ to deduce
||f − fm||1 < ε. True for all m > N means that limm→∞ ||fm − f ||1 = 0 as
required. ¥
Theorem 2

Lp(µ) is complete.

Proof We can use the method of proof above but here we give an alternative
proof.

Given a Cauchy sequence {fn} in Lp(µ) we can find a subsequence such
that

||fni+1
− fni

||p <
1

2i

for all i ≥ 1. Let

gk =
k∑

i=1

(fni+1
− fni

).

Then, by the triangle inequality for norms,
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||gk||p ≤
k∑

i=1

||fni+1
− f ||p

≤
k∑

i=1

1

2i
≤ 1

Thus

||g||pp =

∫

X

|g|pdµ =

∫

X

lim
k→∞

|gk|pdµ

≤ lim inf
k→∞

∫

X

|gk|pdµ by Fatou’s lemma

≤ 1, by above.

In particular, g is finite a.e.(µ) on X. Let f = g where g is defined, 0
elsewhere and go back and choose fn so that they too are zero where g is not
defined.

Let ε > 0 be given. Then there exists N such that ||fn− fm||p < ε for all
m,n ≥ N. Choose such an m. Then

∫

X

|f − fm|pdµ =

∫

X

lim
i→∞

|fni
− fm|pdµ

≤ lim inf
i→∞

∫

X

|fni
− fm|pdµ, by Fatou’s lemma,

≤ εp.

In particular, f−fm ∈ Lp(µ). But we know that fm ∈ Lp(µ) hence f ∈ Lp(µ).
Also, given ε > 0 we have found an N such that ||f−fm||p ≤ ε for all m ≥ N .
Hence limm→∞ ||f − fm||p = 0. ¥
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