Appendix to Notes 7

Extended version of Monotonic Convergence Theorem

From the notes recall the following important result.

Theorem 4.11 Lebesgue’s Monotone Convergence Theorem
Let 0 < f1 < ... < fro < for1 < ... be an increasing sequence of non-
negative F-measurable functions. Let E € F. Then

lim fndu:/ lim f,dpu.

We can try to extend this Theorem. The result is often stated under
the condition that lim, .. f, = f a.e. (u) on E but this will follow from
Theorem 4.11 if we simply apply Corollary 4.10. We can go further. Perhaps
we only have f, < f,41 a.e.(u) on E. That is, there exists a set A, with
zero measure so that for all x € X \ A, we have f,(z) < foi1(x). Let
A ={J", A, so that, by countable sub-additivity, u(A) <> >°, u(A,) =0.
Then for all z € E'\ A we have

filz) < fa(z) < f3(z) < ..

So lim f,, exists a.e.(u). Let us suppose that f is an F-measurable non-
negative function defined on all of E such that on £\ A we have f = lim f,
a.e.(pr). That is, there exists a set B C E'\ A of measure zero so that for all
re(E\A)\B=X)\(AUDB) we have f(z) = lim, . fu(z).
Theorem 1

With the conditions above, and assuming that p is complete

n—oo

lim | f,du= / fdpu.
E E

Proof

The inequality f, < fui1 a.e.(u) on E means that [, frdu < [ fayrdp
for all n so L = lim,,_,+ f 5 Jndp exists, possibly infinite.

Note that for x € X \ (AU B) we have f,(z) < lim, o fin(z) = f(2)
so, for every n > 1, f, < fae. (u) on X. Thus [, fudp < [ fdp for all n.
Hence

Lg/Efdu. (1)

Let 0 < s < f be any simple F-measurable function on F and let 0 <
c <1 Set E, ={x € E:cs(x) < f,(x)}. It is not necessarily true that
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E, C E,. For instance if x € E, N A, then we will have cs(z) < f,(x)
since x € E,, and we may have f,(z) > f,1(x) since z € A. So it is possible
that cs(x) > fui1(z) that is, x ¢ E,41. But certainly E, N AS C E, 41, so
almost all of E, lies in E, ;1 in that E, \ E,.1 C (E,NA,) \ E.1 C A, ie.
w(E, \ Eny1) = 0. Nonetheless, we have the following:

Lemma 1 If Ey, By, Es, ... € F satisfy pu(E; \ Ej41) =0 for all j > 1, then

I (U En> = lim p(E,).

n=1
Proof
Define F;,, = ﬂjzn E;. Then Fy; C F, C F3 C ... and so, by Lemma 4.1,
p (U Fn) = lim p(F,). (2)
n=1
Now
Ur-UnecUe.
n=1 n=1j>n n=1

If € U,_, E, then there exists £k > 1 such that x € E,. Ilf « ¢ (J. -, F,
then, in particular, x ¢ Fj = (5, Ej. So there exists j > k such that = ¢ E}
(obviously j # k). Let ¢ be the largest integer in the range k < ¢ < j for
which = € E,. Then z ¢ E;1 and so z € E,; \ FEy;1. Hence

<D En) \ (G Fn) C G(EK\EZ-H)'

(=1

Since the right hand side has measure zero and p is complete we deduce that

(©)()

Obviously F,, C E, but what of E, \ F,? Similar to above, if x € E,
and x ¢ F, then there exists j > n such that x € E; and so x € Ey \ Epq
for some n < ¢ < j. That is, E, \ F,, C Uz, (Ee \ Ert1), so pu(E,) = u(E,).
Combining this with (2) and (3) gives

n=1



Proposition 1
If s is a simple F-measurable function on \J | E,, with E, as in the
result above, then

lim Ip, (s) = Iy=  5,(s).

n—oo

Proof Straightforward, identical to the proof of Theorem 4.2(v). |

We can now return to the proof of the Theorem 1. As in the proof of
Theorem 4.11

/E fudp > [ fuds

En

> / csdp = clg, (s). (4)

n

We have seen above that the sets F,, satisfy the conditions of Lemma 1
so we let n — oo in (4), applying Proposition 1 and obtaining

L> c]UZQ:1 . (s).

What is | J 2, E,?

Consider = € E \ (U,—, E,) in which case cs(x) > f,(z) for all n. If
we restrict to x € E\ (AU B) then « ¢ A which implies that lim,, . f,.(2)
exists, so we have that cs(x) > lim, o fu(x). And since x ¢ B we have
lim,, . fo(z) = f(z) and so c¢s(x) > f(z). This is impossible since for all x
we have s(z) < f(z) and ¢ < 1. Hence

E\ (nflen> C AUB.

Since the right hand side has measure zero we conclude that

Il (,Q En) = u(E)
and

L>cl,(s).

As in the previous version we let ¢ — 1 to get L > I, (s). Thus L is an upper
bound on the set of integrals of simple functions less than f. Yet | g fduis
the least of all such upper bounds. Hence

L> /E fdp. (5)
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Combining (1) and (5) gives the required equality. |

Finally, you can never have too many proofs of the following result.
Example
S1 ¢
— n? 6

Verification Let z = r(cosz + isinx) for 0 <r < 1.

1—r? 1—2z 1-Z4+Z(1-2)
1—(z+2)+r2  (1-2)(1-%2) (1-2)(1-7)
1 1

= 1—1—227’"003711’.

n=1

So as in example 20 we can use Lebesgue’s Dominated Convergence Theorem
to justify

b 1 2 b % b
/af($)1_2TCOJx+T2dm:/a f(x)dx+2;r"/a f(z) cosnxdx,

as long as f is finite and integrable over (a,b). Apply this with f(x) = 2? to
get

T 1 — 2 3 0 —1)npm
/ z? T dx:W—+47rZu,
0

1 —2rcosxz +r? 3 — n2

having used integration by parts to evaluate the integrals.
We next try to bound

1+r
1 —2rcosxz +1r?




from above. For 7/2 < x < 7 we have cosx < 0 and so 1 — 2rcosx + r2 >
1 + 2 in which case

147 _lbr V241
1—2rcosx+r2 1472~ 2 7

the maximum value being attained at r = V2—1.For0<z< /2 use the
inequality

cosx <1— —2x2.

™

(The coefficient 4/7% is chosen such that the left hand side equals the right
hand side at both z = 0 and = = 7/2. 1 leave it to the student to check that
the inequality holds in the interval between but note that when x = 7 /4 the
left hand side equals 1/v/2 which is less than the value of the right hand side,
3/4.) Thus

4
1—2rcosxz+71% > 1—2r(1——2x2>+r2
T
Sra?
_ 2

= (1-r)+ -

8ra?

Za -

which is a little weak when r is small but we are interested in r near 1. So
for 0 <z < 7/2 we have

2 2
l+7r <7r(r+1) < ™
1—2rcosx+r2 — 8rax?2 — 4dra?

Then

4 1—r? 4 147
2 2
dr = (1 — d
/0 Y1 2rcosz+r2 ( 74)/0 YT 2rcosa 2

2 71'/2 2 2 1 e
(1—r) W—/ T dr+ V24 / r2dx
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for some constant C' > 0 as long as r is not near 0, i.e. r > 1/2 say. In
particular the integral tends to zero as r — 1—. Hence

' e (_1>n+1rn 7.‘_2
1 ASLA———— 6
riql_; n2 12 (6)

We have to be careful here about taking the limit inside the series. Con-
sider

Z(—l)iri = 1l—r+r 54
i=0
B 1
1+
valid for —1 <r < 1. So
° o 1 1
li —1)' =1 = —.
TEP;( )t = lim =0

Yet if we try take the limit inside the series we get

;(—DZ@_ rt= ;(—Di

which is not defined. Of course, the difference with our example is that when
the limit is taken inside the series (6) the resulting series is convergent.
Let

n+1 rh k n+1 n

i and  Sk(r Z

n=1

By the comparison test S(r) converges (absolutely) for —1 <r < 1.

Consider
1S(1) = S(r)] = [S(1) = Sk(1) + Sk(1) — Sk(r) + Sk(r) — S(r)]
< |S(1) = Se(D)] + [Sk(1) = Sk(r)| + [Sk(r) = S(r)]. (7)
Let

n+1 n

N
TMN:Z

n=M
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Then given any € > 0 we have that there exists Ny such that

! <
— 9
n2

N
[A(r, M, N)[ <>
=M

foral N > M > Ny and all —1 < r < 1. Fix such an M, and let N
tend to co. Then with £k = M in (7) we see that the first and third terms
are less than e. For the second term we have that Sy/(r) is a finite sum of
continuous functions and so continuous. Therefore there exists ¢ > 0 such
for —0 < |r — 1] < ¢ we have |Sy(1) — Sp(r)| < e. Combining we see that
there exists 0 > 0 such for 1 —§ < r < 1 we have |S(1) — S(r)| < e. Hence
lim,_;— S(r) = S(1), that is,

s
—~  n? 12

Using partial sums it is possible to make the following “suggestion” logi-
cally sound.

= (=1)"t! =1 =1 =1 =1
P aD DY R DE D D DI
"= nn(Tdd nn(;en = nn;en
1 21 11
BRI = PV
Hence
1 w2
2=



