
Questions

1) Show that if T1 and T2 are topologies on a set X then T1∩T2 is a topology.

2) Let

S = {S ⊆ R : ∀s ∈ S, ∃ε > 0 : (s− ε, s + ε) ⊆ S} .

Prove
(i) S ⊆ U where U is the usual topology on R.

(ii) U ⊆ S.

(Hint: show that S is a topology and then use the minimality of U .)

Deduce that

A ∈ U if, and only if, ∀a ∈ A,∃ε > 0 : (a− ε, a + ε) ⊆ A.

3) Verify that the co-finite topology is a topology on R.

4) Assume that f : (R,U) → (R,U) is continuous by the definition in the
notes (so the preimage of an open set is open).

Prove that

∀x ∈ R,∀ε > 0, ∃δ > 0 : ∀y if |y − x| < δ then |f(y)− f(x)| < ε.

(Hint: Let x ∈ R and ε > 0 be given. Then (f(x) − ε, f(x) − ε) ∈ U .
So by definition f−1(f(x) − ε, f(x) + ε) ∈ U . Then apply Question 2 to an
appropriate point in this preimage.)

5) Let Pn be the set of all finite cubes in Rn of the form

(a1, b1]× (a2, b2]× ...× (an, bn].

Prove that P2 is a semi-ring.

Do you think that Pn is a semi-ring for all n ≥ 1?

6) Show that P2 is not a ring.

7) Prove that R is a ring if, and only if,

(i) A,B ∈ R ⇒ A ∩B ∈ R
(ii) A,B ∈ R ⇒ A M B ∈ R (where A M B is the symmetric

difference, (A \B) ∪ (B \ A)).

8) Let En be the collection of all finite unions of disjoint members of Pn (and
called the elementary figures in Rn).
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Prove that E2 is a ring.

9) Define F , a collection of subsets of R by A ∈ F if, and only if, either |A|
is countable or A = R.

If F a field?

Is F closed under countable unions?

10) Verify Examples 5(a) and (b) of the notes.

11) Show that the intersection of any non-empty collection of a) rings, b)
σ−rings or c) fields is a a) ring, b) σ−ring or c) field, respectively.

12) (Theorem 1.7) Let C be a semi-ring in a set X andR(C) the ring generated
by C (and so, the intersection of all rings containing C). Let

A =

{
A ⊆ X : A =

n⋃
i=1

Ei for some disjoint members Ei of C
}

.

Prove
(i) A ⊆ R(C),

(ii) A is a ring (so check that A satisfies the definition and, as in the
proof of Corollary 1.5, look at A \B first).

Deduce that R(C) ⊆ A.

Hence conclude that R(C) = A
13) Let A be a collection of subsets of X and F a field of sets from X.

Prove that A ⊆ F if, and only if, σ(A) ⊆ F .

14) Show that the Borel sets B in R are

(i) generated by all intervals of the form [a, b],

(ii) generated by all intervals of the form [a, b).

Further, show that B contains

(iii) all one point sets {x}, x ∈ R,

(iv) Q,

(v) the set of irrational numbers.

Deduce that

(vi) the co-finite topology on R is contained in B.

15) Let F : R→ R be a distribution function.

Show that the number of points of discontinuity is at most countable.

(Hint: try to associate a rational number with each discontinuity).
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16) Let pn, n ∈ Z be a sequence of non-negative reals. Let

F (x) =
∑

−∞<n≤x

pn.

Show that F is a distribution function.

Why is it important that we have n ≤ x in the definition and not n < x?

17) Let X = [0, 1) and C the collection of sets:

φ,X, [0, 1/2), [0, 1/4), [0, 3/4) and [1/4, 3/4).

Define µ on C by:

µ(φ) = 0, µ(X) = 4, µ([0, 1/2)) = 2,
µ([0, 1/4)) = 2, µ([0, 3/4)) = 4, µ([1/4, 3/4)) = 2.

Show that µ is additive on C.

Can µ be extended to an additive set function on the ring generated by
C?

18) Let X = {1, 2, 3, 4, 5} and C the collection of subsets:

{φ,X, {1}, {2, 3}, {1, 2, 3}, {4, 5}}.
Show that C is a semi-ring.

Define µ on C by:

µ(φ) = 0, µ(X) = 3, µ({1}) = 1,
µ({2, 3}) = 1, µ({1, 2, 3}) = 2, µ({4, 5}) = 1.

Show that µ is additive.

What is the ring R generated by C?

Find the additive extension of µ to R and show that it is a measure.

19) Let X be a uncountable set.

Prove that each of the following functions defined on all subsets of X is
an outer measure, and determine the corresponding collection of measurable
sets.

(a) λ(φ) = 0 and λ(A) = 1 for all A 6= φ.

(b) λ(φ) = 0, λ(X) = 2 and λ(A) = 1 for all A 6= φ or X.
(c)

λ(A) =

{
0 if A is countable
1 if A is non-countable.
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20) Let X = N and let λ(E) = n/(n+1) if E contains n points and λ(E) = 1
if E is infinite. Determine the collection of λ−measurable sets.

21) Let L be the set of Lebesgue measurable subsets of R.

Prove that, given E ∈ L and ε > 0, there exists an open set G, so G ∈ U ,
with E ⊆ G and µ(G \ E) < ε.

(Hint. On L we have that µ = µ∗, the outer measure that is defined on all
subsets of R. Look at the definition of µ∗.)

22) Show that the Lebesgue measure µ on the real line satisfies

µ(cA) = |c|µ(A)

for all c ∈ R and all A ∈ L, the Lebesgue measurable sets.

(Hint. Follow the method of Lemma 2.13 in the notes.)

23) Verify that, given a map f : X → Y and subsets Ai ⊆ Y, i ≥ 1, we have

f−1

( ∞⋃
i=1

Ai

)
=

∞⋃
i=1

f−1 (Ai) , f−1

( ∞⋂
i=1

Ai

)
=

∞⋂
i=1

f−1 (Ai) ,

and f−1(Ac) = (f−1(A))
c
.

24) (a) Prove that {[−∞, c) : c ∈ R} generates B∗.
(b) Prove that f : X → R∗ is F−measurable if, and only if,

{x : f(x) < c} ∈ F
for all c ∈ R.

25) Let {xn} be a sequence of real numbers. Recall that

lim sup
n→∞

xn = lim
n→∞

{
sup
r≥n

xr

}
and lim inf

n→∞
xn = lim

n→∞

{
inf
r≥n

xr

}
.

Prove that

lim sup(−
n→∞

xn) = −lim inf
n→∞

xn,

26) For a sequence of sets {An} define

lim sup An =
∞⋂

n=1

∞⋃

k=n

Ak and lim inf An =
∞⋃

n=1

∞⋂

k=n

Ak.
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(a) Note that x ∈ An for only finitely many n if, and only if,

∃N ≥ 1 : ∀n ≥ Nx /∈ An.

Negate this statement to get

lim sup An = {x : x ∈ An for infinitely many n} .

(b) Prove

lim inf An = {x : x ∈ An for all but finitely many n} .

(c) If A1 ⊆ A2 ⊆ A3 ⊆ A4 ⊆ ... prove that

lim sup An = lim inf An =
∞⋃

k=1

Ak.

(d) If A1 ⊇ A2 ⊇ A3 ⊇ A4 ⊇ ... prove that

lim sup An = lim inf An =
∞⋂

k=1

Ak.

(e) Prove

(lim sup An)c = lim inf Ac
n.

27) Let An = (−1/n, 1] ⊆ R if n is odd and An = (−1, 1/n] ⊆ R if n is even.
Find lim sup An and lim inf An.

28) Let µ be the counting measure on Z (so µ(A) = |A| if A ∈ Z is finite and
µ(A) = ∞ otherwise).

Find a sequence of subsets of Z satisfying E1 ⊇ E2 ⊇ E3 ⊇ E4 ⊇ ...
(which we say is a decreasing sequence) for which

⋂∞
k=1 Ek = φ but

lim
n→∞

µ(En) 6= 0.

29) Let E be a σ-field and µ a σ-additive set function defined on E that does
not assume the value −∞.

If E1 ⊇ E2 ⊇ E3 ⊇ E4 ⊇ ... is a nested sequence of members of E (we say
that it is a decreasing sequence) with µ(E1) < ∞, show that

lim
n→∞

µ(En) = µ

( ∞⋂

k=1

Ek

)
.

(Hint: Lemma 4.1)
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30) Recall that given a Distribution function F , the Lebesgue-Stieltjes mea-
sure of (a, b] is given by

µF ((a, b]) = F (b)− F (a).

(a) Give expressions for

µF ([a, b]), µF ([a, b)) and µF ((a, b)).

(b) Give an example of a distribution function F such that

µF ((a, b)) < F (b)− F (a) < µF ([a, b])

for some a, b ∈ R.

31) Let

F (x) =





0 if x < −1
1 + x if −1 ≤ x < 0
2 + x2 if 0 ≤ x < 2
9 if x ≥ 2.

Compute the µF−measure of each of the following sets:

(a) {2}, (b) [−1/2, 3), (c) (−1, 0] ∪ (1, 2),
(d) [0, 1/2) ∪ (1, 2], (e) {x : |x|+ 2x2 > 1}.

32) Verify parts (i)-(iv) of Theorem 4.2.

33) Apply the Monotone Convergence Theorem to show
(a)

lim
n→∞

n log

(
1 +

t

n

)
= t

for all t ≥ 0. Hence calculate
(b) Deduce

lim
n→∞

∫ n

0

(
1 +

t

n

)n

e−2xdx = 1.

34) Apply Corollary 4.13 to show
(a)

∫ 1

0

(
log x

1− x

)2

dx =
π2

3
.
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(Hint. Expand (1− x)−2.)
(b) If p > −1,

∫ 1

0

xp log x

1− x
dx = −

∑ 1

(p + n)2
.

35) Define f : [0, 1] → R by f(x) = 0 if x is rational and if x is irrational set
f(x) = n where n is the number of zeros immediately following the decimal
point in the representation of x in the decimal scale.

This function is not simple (it takes infinitely many values) but show
how it can be approximated by an increasing sequence of simple measurable
functions. Deduce that f is measurable.

Calculate
∫ 1

0
f(x)dx.

36) (Part of Theorem 4.14) Let f be a non-negative F -measurable function
on a measure space (X,F, µ).

For A ⊆ F define

φ(A) =

∫

A

fdµ.

Let {En} be collection of disjoint sets from F . Define

fn(x) =

{
f(x) if x ∈ En

0 if x /∈ En,

so f(x) =
∑

fn(x) for all x ∈ ⋃∞
n=1 En. Using this series representation for

f, along with Corollary 4.14, show that

φ

( ∞⋃
n=1

En

)
=

∞∑
n=1

φ(En),

i.e. φ is σ-additive.

37) In Fatou’s Lemma choose gn(x) = 1 for x ≤ n < x + 1 and 0 elsewhere.
Show that we then get strict inequality in the result.

(You should remember this example as an aid to remembering which way
the inequality goes in Fatou’s Lemma.)

38) For a, b ∈ R prove
(i)

max(a + b, 0) ≤ max(a, 0) + max(b, 0),

(ii)
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min(a + b, 0) ≥ min(a, 0) + min(b, 0).

So, if f, g : X → R∗ deduce
(iii)

(f + g)+ ≤ f+ + g+,

(iv)

(f + g)− ≤ f− + g−.

39) Show that for reals a, b ≥ 0 we get equality in |a− b| ≤ a + b if, and only
if, either a = 0 or b = 0.

40) (i) Show that if f if L-integrable on [0,∞) then

∫ ∞

0

fdµ = lim
n→∞

∫ n

0

fdµ

(Hint. Use Theorem 4.19.)

(ii) Show that if f if L-measurable on [0,∞) and non-negative then the
same result holds.
(Hint. Use Theorem 4.11.)

41) Prove that e−ttx−1 is L-integrable over (0,∞) for all x > 0.

(Hint. First use question 40 to replace the interval of convergence by a finite
one. Then for each fixed x find k : e−ttx−1 ≤ ke−t/2 for t ≥ 1, and so show
that the sequence of integrals

∫ n

0
fdµ that arise from the use of question 40

is increasing and bounded above.)

42) Define the Gamma function by

Γ(x) =

∫ ∞

0

e−ttx−1dµ

for x > 0, which exists by Question 41. Show that

Γ(x) = lim
n→∞

∫ n

0

(
1− t

n

)n

tx−1dµ

= lim
n→∞

n!nx

x(x + 1)...(x + n)
,

as long as −x /∈ N∪{0}. (Gauss’s formula.)

(Hint. Use the ideas of Question 33.)
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43) Show that if a > 1 then

∫ ∞

0

xa−1

ex − 1
dµ = Γ(a)

∞∑
n=1

1

na
.

44) Find
(i)

lim
n→∞

∫ ∞

0

(
1 +

x

n

)−n

sin(x/n)dµ,

(ii)

lim
n→∞

∫ ∞

0

1 + nx

(1 + x)n
dµ.

45) Show
(i)

∫ ∞

0

sechx2dµ =
√

π

∞∑
n=0

(−1)n

√
2n + 1

.

(You may assume that
∫∞
0

e−x2
dµ =

√
π/2.)

(ii)

∫ ∞

0

cos x

ex + 1
dµ =

∞∑
n=1

(−1)n−1n

n2 + 1
.

46) Given 0 < b < a evaluate

∫ ∞

0

sinhbx

sinhax
dµ.
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