Questions

- 1) Show that if \mathcal{T}_1 and \mathcal{T}_2 are topologies on a set X then $\mathcal{T}_1 \cap \mathcal{T}_2$ is a topology.
- 2) Let

$$S = \{ S \subset \mathbb{R} : \forall s \in S, \exists \varepsilon > 0 : (s - \varepsilon, s + \varepsilon) \subseteq S \}.$$

Prove

- (i) $S \subseteq \mathcal{U}$ where \mathcal{U} is the usual topology on \mathbb{R} .
- (ii) $\mathcal{U} \subseteq \mathcal{S}$.

(Hint: show that S is a topology and then use the minimality of U.) Deduce that

$$A \in \mathcal{U}$$
 if, and only if, $\forall a \in A, \exists \varepsilon > 0 : (a - \varepsilon, a + \varepsilon) \subseteq A$.

- 3) Verify that the co-finite topology is a topology on \mathbb{R} .
- 4) Assume that $f:(\mathbb{R},\mathcal{U})\to(\mathbb{R},\mathcal{U})$ is continuous by the definition in the notes (so the preimage of an open set is open).

Prove that

$$\forall x \in \mathbb{R}, \forall \varepsilon > 0, \exists \delta > 0 : \forall y \text{ if } |y - x| < \delta \text{ then } |f(y) - f(x)| < \varepsilon.$$

(Hint: Let $x \in \mathbb{R}$ and $\varepsilon > 0$ be given. Then $(f(x) - \varepsilon, f(x) - \varepsilon) \in \mathcal{U}$. So by definition $f^{-1}(f(x) - \varepsilon, f(x) + \varepsilon) \in \mathcal{U}$. Then apply Question 2 to an appropriate point in this preimage.)

5) Let \mathcal{P}^n be the set of all finite cubes in \mathbb{R}^n of the form

$$(a_1, b_1] \times (a_2, b_2] \times ... \times (a_n, b_n].$$

Prove that \mathcal{P}^2 is a semi-ring.

Do you think that \mathcal{P}^n is a semi-ring for all $n \geq 1$?

- 6) Show that \mathcal{P}^2 is not a ring.
- 7) Prove that \mathcal{R} is a ring if, and only if,
 - (i) $A, B \in \mathcal{R} \Rightarrow A \cap B \in \mathcal{R}$
- (ii) $A, B \in \mathcal{R} \Rightarrow A \triangle B \in \mathcal{R}$ (where $A \triangle B$ is the symmetric difference, $(A \setminus B) \cup (B \setminus A)$).
- 8) Let \mathcal{E}^n be the collection of all finite unions of disjoint members of \mathcal{P}^n (and called the elementary figures in \mathbb{R}^n).

Prove that \mathcal{E}^2 is a ring.

9) Define \mathcal{F} , a collection of subsets of \mathbb{R} by $A \in \mathcal{F}$ if, and only if, either |A| is countable or $A = \mathbb{R}$.

If \mathcal{F} a field?

Is \mathcal{F} closed under countable unions?

- 10) Verify Examples 5(a) and (b) of the notes.
- 11) Show that the intersection of any non-empty collection of a) rings, b) σ -rings or c) fields is a a) ring, b) σ -ring or c) field, respectively.
- 12) (Theorem 1.7) Let \mathcal{C} be a semi-ring in a set X and $\mathcal{R}(\mathcal{C})$ the ring generated by \mathcal{C} (and so, the intersection of all rings containing \mathcal{C}). Let

$$\mathcal{A} = \left\{ A \subseteq X : A = \bigcup_{i=1}^{n} E_i \text{ for some disjoint members } E_i \text{ of } \mathcal{C} \right\}.$$

Prove

- (i) $A \subseteq \mathcal{R}(\mathcal{C})$,
- (ii) \mathcal{A} is a ring (so check that \mathcal{A} satisfies the definition and, as in the proof of Corollary 1.5, look at $A \setminus B$ first).

Deduce that $\mathcal{R}(\mathcal{C}) \subseteq \mathcal{A}$.

Hence conclude that $\mathcal{R}(\mathcal{C}) = \mathcal{A}$

- 13) Let \mathcal{A} be a collection of subsets of X and \mathcal{F} a field of sets from X. Prove that $\mathcal{A} \subseteq \mathcal{F}$ if, and only if, $\sigma(\mathcal{A}) \subseteq \mathcal{F}$.
- 14) Show that the Borel sets \mathcal{B} in \mathbb{R} are
 - (i) generated by all intervals of the form [a, b],
 - (ii) generated by all intervals of the form [a, b).

Further, show that \mathcal{B} contains

- (iii) all one point sets $\{x\}$, $x \in \mathbb{R}$,
- (iv) \mathbb{Q} ,
- (v) the set of irrational numbers.

Deduce that

- (vi) the co-finite topology on \mathbb{R} is contained in \mathcal{B} .
- 15) Let $F: \mathbb{R} \to \mathbb{R}$ be a distribution function.

Show that the number of points of discontinuity is at most countable. (Hint: try to associate a rational number with each discontinuity).

16) Let $p_n, n \in \mathbb{Z}$ be a sequence of non-negative reals. Let

$$F(x) = \sum_{-\infty < n \le x} p_n.$$

Show that F is a distribution function.

Why is it important that we have $n \leq x$ in the definition and not n < x?

17) Let X = [0, 1) and \mathcal{C} the collection of sets:

$$\phi, X, [0, 1/2), [0, 1/4), [0, 3/4)$$
 and $[1/4, 3/4)$.

Define μ on \mathcal{C} by:

$$\mu(\phi) = 0,$$
 $\mu(X) = 4,$ $\mu([0, 1/2)) = 2,$ $\mu([0, 1/4)) = 2,$ $\mu([0, 3/4)) = 4,$ $\mu([1/4, 3/4)) = 2.$

Show that μ is additive on \mathcal{C} .

Can μ be extended to an additive set function on the ring generated by C?

18) Let $X = \{1, 2, 3, 4, 5\}$ and \mathcal{C} the collection of subsets:

$$\{\phi,X,\{1\},\{2,3\},\{1,2,3\},\{4,5\}\}.$$

Show that C is a semi-ring.

Define μ on \mathcal{C} by:

$$\begin{array}{ll} \mu(\phi)=0, & \mu(X)=3, & \mu(\{1\})=1, \\ \mu(\{2,3\})=1, & \mu(\{1,2,3\})=2, & \mu(\{4,5\})=1. \end{array}$$

Show that μ is additive.

What is the ring \mathcal{R} generated by \mathcal{C} ?

Find the additive extension of μ to \mathcal{R} and show that it is a measure.

19) Let X be a uncountable set.

Prove that each of the following functions defined on all subsets of X is an outer measure, and determine the corresponding collection of measurable sets.

(a)
$$\lambda(\phi) = 0$$
 and $\lambda(A) = 1$ for all $A \neq \phi$.

(b)
$$\lambda(\phi) = 0, \lambda(X) = 2$$
 and $\lambda(A) = 1$ for all $A \neq \phi$ or X .

(c)

$$\lambda(A) = \begin{cases} 0 & \text{if } A \text{ is countable} \\ 1 & \text{if } A \text{ is non-countable.} \end{cases}$$

20) Let $X = \mathbb{N}$ and let $\lambda(E) = n/(n+1)$ if E contains n points and $\lambda(E) = 1$ if E is infinite. Determine the collection of λ -measurable sets.

21) Let \mathcal{L} be the set of Lebesgue measurable subsets of \mathbb{R} .

Prove that, given $E \in \mathcal{L}$ and $\varepsilon > 0$, there exists an open set G, so $G \in \mathcal{U}$, with $E \subseteq G$ and $\mu(G \setminus E) < \varepsilon$.

(Hint. On \mathcal{L} we have that $\mu = \mu^*$, the outer measure that is defined on all subsets of \mathbb{R} . Look at the definition of μ^* .)

22) Show that the Lebesgue measure μ on the real line satisfies

$$\mu(cA) = |c|\mu(A)$$

for all $c \in \mathbb{R}$ and all $A \in \mathcal{L}$, the Lebesgue measurable sets.

(Hint. Follow the method of Lemma 2.13 in the notes.)

23) Verify that, given a map $f: X \to Y$ and subsets $A_i \subseteq Y, i \ge 1$, we have

$$f^{-1}\left(\bigcup_{i=1}^{\infty}A_i\right) = \bigcup_{i=1}^{\infty}f^{-1}\left(A_i\right), \qquad f^{-1}\left(\bigcap_{i=1}^{\infty}A_i\right) = \bigcap_{i=1}^{\infty}f^{-1}\left(A_i\right),$$

and $f^{-1}(A^c) = (f^{-1}(A))^c$.

- 24) (a) Prove that $\{[-\infty, c) : c \in \mathbb{R}\}$ generates \mathcal{B}^* .
 - (b) Prove that $f: X \to \mathbb{R}^*$ is \mathcal{F} -measurable if, and only if,

$$\{x : f(x) < c\} \in \mathcal{F}$$

for all $c \in \mathbb{R}$.

25) Let $\{x_n\}$ be a sequence of real numbers. Recall that

$$\limsup_{n \to \infty} x_n = \lim_{n \to \infty} \left\{ \sup_{r \ge n} x_r \right\} \quad \text{and} \quad \liminf_{n \to \infty} x_n = \lim_{n \to \infty} \left\{ \inf_{r \ge n} x_r \right\}.$$

Prove that

$$\lim \sup_{n \to \infty} (-x_n) = -\lim \inf_{n \to \infty} x_n,$$

26) For a sequence of sets $\{A_n\}$ define

$$\limsup A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k \quad \text{and} \quad \liminf A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k.$$

(a) Note that $x \in A_n$ for only finitely many n if, and only if,

$$\exists N \geq 1 : \forall n \geq Nx \notin A_n.$$

Negate this statement to get

 $\limsup A_n = \{x : x \in A_n \text{ for infinitely many } n\}.$

(b) Prove

 $\liminf A_n = \{x : x \in A_n \text{ for all but finitely many } n\}.$

(c) If $A_1 \subseteq A_2 \subseteq A_3 \subseteq A_4 \subseteq \dots$ prove that

$$\limsup A_n = \liminf A_n = \bigcup_{k=1}^{\infty} A_k.$$

(d) If $A_1 \supseteq A_2 \supseteq A_3 \supseteq A_4 \supseteq \dots$ prove that

$$\limsup A_n = \liminf A_n = \bigcap_{k=1}^{\infty} A_k.$$

(e) Prove

$$\left(\limsup A_n\right)^c = \liminf A_n^c.$$

- 27) Let $A_n = (-1/n, 1] \subseteq \mathbb{R}$ if n is odd and $A_n = (-1, 1/n] \subseteq \mathbb{R}$ if n is even. Find $\lim \sup A_n$ and $\lim \inf A_n$.
- 28) Let μ be the counting measure on \mathbb{Z} (so $\mu(A) = |A|$ if $A \in \mathbb{Z}$ is finite and $\mu(A) = \infty$ otherwise).

Find a sequence of subsets of \mathbb{Z} satisfying $E_1 \supseteq E_2 \supseteq E_3 \supseteq E_4 \supseteq ...$ (which we say is a *decreasing* sequence) for which $\bigcap_{k=1}^{\infty} E_k = \phi$ but

$$\lim_{n\to\infty}\mu(E_n)\neq 0.$$

29) Let \mathcal{E} be a σ -field and μ a σ -additive set function defined on \mathcal{E} that does not assume the value $-\infty$.

If $E_1 \supseteq E_2 \supseteq E_3 \supseteq E_4 \supseteq ...$ is a nested sequence of members of \mathcal{E} (we say that it is a *decreasing* sequence) with $\mu(E_1) < \infty$, show that

$$\lim_{n\to\infty}\mu(E_n)=\mu\left(\bigcap_{k=1}^{\infty}E_k\right).$$

(Hint: Lemma 4.1)

30) Recall that given a Distribution function F, the Lebesgue-Stieltjes measure of (a, b] is given by

$$\mu_F((a,b]) = F(b) - F(a).$$

(a) Give expressions for

$$\mu_F([a,b]), \quad \mu_F([a,b)) \quad \text{and} \quad \mu_F((a,b)).$$

(b) Give an example of a distribution function F such that

$$\mu_F((a,b)) < F(b) - F(a) < \mu_F([a,b])$$

for some $a, b \in \mathbb{R}$.

31) Let

$$F(x) = \begin{cases} 0 & \text{if } x < -1\\ 1+x & \text{if } -1 \le x < 0\\ 2+x^2 & \text{if } 0 \le x < 2\\ 9 & \text{if } x \ge 2. \end{cases}$$

Compute the μ_F -measure of each of the following sets:

(a)
$$\{2\}$$
, (b) $[-1/2,3)$, (c) $(-1,0] \cup (1,2)$, (d) $[0,1/2) \cup (1,2]$, (e) $\{x: |x|+2x^2>1\}$.

- 32) Verify parts (i)-(iv) of Theorem 4.2.
- 33) Apply the Monotone Convergence Theorem to show (a)

$$\lim_{n \to \infty} n \log \left(1 + \frac{t}{n} \right) = t$$

for all $t \geq 0$. Hence calculate

(b) Deduce

$$\lim_{n \to \infty} \int_0^n \left(1 + \frac{t}{n} \right)^n e^{-2x} dx = 1.$$

34) Apply Corollary 4.13 to show (a)

$$\int_0^1 \left(\frac{\log x}{1-x}\right)^2 dx = \frac{\pi^2}{3}.$$

(Hint. Expand $(1-x)^{-2}$.)

(b) If p > -1,

$$\int_0^1 \frac{x^p \log x}{1 - x} dx = -\sum \frac{1}{(p+n)^2}.$$

35) Define $f:[0,1]\to\mathbb{R}$ by f(x)=0 if x is rational and if x is irrational set f(x)=n where n is the number of zeros immediately following the decimal point in the representation of x in the decimal scale.

This function is not simple (it takes infinitely many values) but show how it can be approximated by an increasing sequence of simple measurable functions. Deduce that f is measurable.

Calculate $\int_0^1 f(x) dx$.

36) (Part of Theorem 4.14) Let f be a non-negative \mathcal{F} -measurable function on a measure space (X, F, μ) .

For $A \subseteq \mathcal{F}$ define

$$\phi(A) = \int_A f d\mu.$$

Let $\{E_n\}$ be collection of disjoint sets from \mathcal{F} . Define

$$f_n(x) = \begin{cases} f(x) & \text{if } x \in E_n \\ 0 & \text{if } x \notin E_n, \end{cases}$$

so $f(x) = \sum f_n(x)$ for all $x \in \bigcup_{n=1}^{\infty} E_n$. Using this series representation for f, along with Corollary 4.14, show that

$$\phi\left(\bigcup_{n=1}^{\infty} E_n\right) = \sum_{n=1}^{\infty} \phi(E_n),$$

i.e. ϕ is σ -additive.

37) In Fatou's Lemma choose $g_n(x) = 1$ for $x \le n < x + 1$ and 0 elsewhere. Show that we then get strict inequality in the result.

(You should remember this example as an aid to remembering which way the inequality goes in Fatou's Lemma.)

38) For $a, b \in \mathbb{R}$ prove (i)

$$\max(a+b,0) \le \max(a,0) + \max(b,0),$$

(ii)

$$\min(a+b,0) > \min(a,0) + \min(b,0).$$

So, if $f, g: X \to \mathbb{R}^*$ deduce (iii)

$$(f+q)^+ < f^+ + q^+$$

(iv)

$$(f+q)^- < f^- + q^-.$$

- 39) Show that for reals $a, b \ge 0$ we get equality in $|a b| \le a + b$ if, and only if, either a = 0 or b = 0.
- 40) (i) Show that if f if \mathcal{L} -integrable on $[0, \infty)$ then

$$\int_0^\infty f d\mu = \lim_{n \to \infty} \int_0^n f d\mu$$

(Hint. Use Theorem 4.19.)

(ii) Show that if f if \mathcal{L} -measurable on $[0,\infty)$ and non-negative then the same result holds.

(Hint. Use Theorem 4.11.)

- 41) Prove that $e^{-t}t^{x-1}$ is \mathcal{L} -integrable over $(0, \infty)$ for all x > 0.
- (Hint. First use question 40 to replace the interval of convergence by a finite one. Then for each fixed x find $k: e^{-t}t^{x-1} \le ke^{-t/2}$ for $t \ge 1$, and so show that the sequence of integrals $\int_0^n f d\mu$ that arise from the use of question 40 is increasing and bounded above.)
- 42) Define the Gamma function by

$$\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} d\mu$$

for x > 0, which exists by Question 41. Show that

$$\Gamma(x) = \lim_{n \to \infty} \int_0^n \left(1 - \frac{t}{n}\right)^n t^{x-1} d\mu$$
$$= \lim_{n \to \infty} \frac{n! n^x}{x(x+1)...(x+n)},$$

as long as $-x \notin \mathbb{N} \cup \{0\}$. (Gauss's formula.)

(Hint. Use the ideas of Question 33.)

43) Show that if a > 1 then

$$\int_0^\infty \frac{x^{a-1}}{e^x - 1} d\mu = \Gamma(a) \sum_{n=1}^\infty \frac{1}{n^a}.$$

44) Find (i)

$$\lim_{n \to \infty} \int_0^\infty \left(1 + \frac{x}{n} \right)^{-n} \sin(x/n) d\mu,$$

(ii)

$$\lim_{n\to\infty} \int_0^\infty \frac{1+nx}{(1+x)^n} d\mu.$$

45) Show

(i)

$$\int_0^\infty \mathrm{sech} x^2 d\mu = \sqrt{\pi} \sum_{n=0}^\infty \frac{(-1)^n}{\sqrt{2n+1}}.$$

(You may assume that $\int_0^\infty e^{-x^2} d\mu = \sqrt{\pi}/2$.)

$$\int_0^\infty \frac{\cos x}{e^x + 1} d\mu = \sum_{n=1}^\infty \frac{(-1)^{n-1} n}{n^2 + 1}.$$

46) Given 0 < b < a evaluate

$$\int_0^\infty \frac{\sinh bx}{\sinh ax} d\mu.$$