
Section 5 Series with non-negative terms
Theorem 5.1 Let

∑∞
r=1 ar be a series with non-negative terms and let sn

be the n-th partial sum for each n ∈ N. Then
∑∞

r=1 ar is convergent if, and

only if, {sn}n∈N is bounded.

Proof Since ar ≥ 0 for all r ∈ N, then sn+1 − sn = an+1 ≥ 0, i.e. sn+1 ≥ sn

for all n ≥ 1 and so the sequence {sn}n∈N of partial sums is increasing.

(⇒) If
∑∞

r=1 ar converges then {sn}n∈N converges by definition. Hence,

by Theorem 3.2, {sn}n∈N is bounded.

(⇐) Conversely, if {sn}n∈N is bounded then, in particular, it is bounded

above. Since {sn}n∈N is also increasing, then {sn}n∈N is convergent by The-
orem 3.4. Thus we have verified the definition that

∑∞
r=1 ar is convergent.�

Remark If the series of non-negative terms
∑∞

r=1 ar is convergent, the se-

quence {sn}n∈N is convergent and its limit, which is the sum of the series, is

the lub{sn : n ∈ N}. (See Theorem 3.4.)

The next result is a way of testing convergence or divergence by compar-
ison with a known series.

Theorem 5.2 (First Comparison Test)

Let
∑∞

r=1 ar and
∑∞

r=1 br be series with 0 ≤ ar ≤ br for all r ∈ N.

(i) If
∑∞

r=1 br is convergent then
∑∞

r=1 ar is convergent. If
∑∞

r=1 br has sum

τ and
∑∞

r=1 ar has a sum σ, then σ ≤ τ .

(ii) If
∑∞

r=1 ar is divergent, then
∑∞

r=1 br is divergent.

Proof

(i) Let sn and tn be the nth partial sums of
∑∞

r=1 ar and
∑∞

r=1 br, re-

spectively. As in the proof of Theorem 5.1 both {sn}n∈N and {tn}n∈N are
increasing sequences.

By hypothesis, {tn}n∈N is convergent with limit τ . But {tn}n∈N is increas-

ing, so by Theorem 3.4, τ is the least upper bound of {tn : n ∈ N}.
Since 0 ≤ ar ≤ br for all r ∈ N, we have that

0 ≤
n∑

r=1

ar ≤
n∑

r=1

br,

i.e. 0 ≤ sn ≤ tn for all n ∈ N. Thus all the sn are no greater than any upper
bound of {tn : n ∈ N}, that is, sn ≤ τ for all n ∈ N. So τ is an upper bound
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for {sn : n ∈ N}.
Then, since {sn}n∈N is also increasing, we have again by Theorem 3.4 that

{sn}n∈N is convergent with limit σ = lub{sn : n ∈ N}. Being the least of all

upper bounds σ is less than or equal to any upper bound of the {sn : n ∈ N}.
In particular, σ ≤ τ .

(ii) Again, this is simply the contrapositive of part (i) (See the appendix
within section 3 of these notes.) �

Example Show that
∑∞

r=0
1

3r+1
is convergent and

∑∞
r=1

1
r2/3 is divergent.

Solution Firstly,

0 ≤ 1

3r + 1
≤ 1

3r

and
∑∞

r=0
1
3r converges since it is a Geometric Series with ratio 1

3
(See The-

orem 4.1). Hence our series converges.
Secondly,

0 ≤ 1

r
≤ 1

r2/3

and the fact that
∑∞

r=1
1
r

diverges is an earlier example. Hence our series

diverges. �

See also Question 6 Sheet 5

Theorem 5.3 (Second Comparison Test)

Let
∑∞

r=1 ar and
∑∞

r=1 br be series such that ar ≥ 0 and br > 0 for all

r ∈ N. Suppose that the sequence
{

an

bn

}
n∈N

is convergent with limit ` 6= 0.

Then
∑∞

r=1 ar is convergent if and only if
∑∞

r=1 br is convergent.

Proof
Suppose that limn→∞

an

bn
= `. Since an ≥ 0 and bn > 0 we have an

bn
≥ 0

and thus ` ≥ 0. But, by assumption, ` 6= 0, hence ` > 0.

We now apply Lemma 3.6, concluding that there exists N0 ∈ N such that

`

2
<

an

bn

<
3`

2
(11)

for all n ≥ N0.

(⇒) First suppose that
∑∞

r=1 ar is convergent.
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By Theorem 4.2
∑∞

r=N0
ar is convergent.

By Theorem 4.4
∑∞

r=N0

2
`
ar is convergent.

From (11) we have

0 < bn <
2

`
an

for all n ≥ N0. So, by the First Comparison Test,
∑∞

r=N0
br is convergent.

Finally, by Theorem 4.2 again,
∑∞

r=1 br is convergent.

(⇐) Conversely, suppose that
∑∞

r=1 br is convergent.

By Theorem 4.2
∑∞

r=N0
br is convergent.

By Theorem 4.4
∑∞

r=N0

3`
2
br is convergent.

This time we use (11) in the form

0 ≤ an <
3`

2
bn

for all n ≥ N0. So, by the First Comparison Test,
∑∞

r=N0

2
3`

ar is convergent.

Again
∑∞

r=1 ar is convergent, justified by Theorems 4.2. �

Note If the sequence {an/bn}n∈N is either divergent or has a zero limit then

Theorem 5.3 tells us nothing. We have to either choose a different series
∑

br

for comparison or use a different test on our given series
∑

ar.

We can use the Comparison tests to prove the following..

Theorem 5.4
∞∑

r=1

1

r2

is convergent.

Solution. As before, the idea is to compare this series with

∞∑
r=1

1

r(r + 1)
.

This may not look a “simpler” series but we saw in Theorem 4.8 that it is
easy to sum.

Let an = 1
n2 and bn = 1

n(n+1)
. Then an

bn
= 1+ 1

n
and so limn→∞

an

bn
= 1 6= 0.

Hence by the Second Comparison test, Theorem 5.3,
∑∞

r=1
1
r2 is convergent.�
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Excercise for students; try to show that
∑∞

r=1
1
r2 converges, with sum less

than 2, using the First Comparison Test.

Note In later courses it will be shown that
∑∞

r=1
1
r2 has sum π2/6.

Theorem 5.4 For k ∈ Z we have that

∞∑
r=1

1

rk
is

{
convergent if k ≥ 2
divergent if k ≤ 1.

Proof (Left to student)

Example Test the series
∞∑

r=1

2r2 + 2r + 1

r5 + 2

for convergence.

Solution

Rough work
For large r, 2r2 + 2r + 1 is dominated by 2r2 (i.e. if r = 1, 000 then 2r2

differs from 2r2 +2r +1 by less than 0.1%). Similarly r5 +2 is dominated by
r5, so for large r the sum will “look like”

∑
r

2
r3 which we know, by Theorem

5.4, converges.

End of rough work

Let

an =
2n2 + 2n + 1

n5 + 2
, and bn =

1

n3
.

Then

an

bn

=
n3(2n2 + 2n + 1)

n5 + 2
=

2 + 2
n

+ 2
n2

1 + 2
n5

, so lim
n→∞

an

bn

= 2 6= 0.

Since, by Theorem 5.4,
∑∞

r=1
1
r3 is convergent, we can use the Second

Comparison Test to deduce that
∑∞

r=1
2r2+2r+1

r5+2
converges. �

Example Test the series
∞∑

r=1

r2 − 2r − 3

r3 − 2

for convergence.
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Proof
Rough work
For large r the general term of this series will “look like” r2

r3 = 1
r
, the sum

of which we know diverges.
End of rough work

Let

an =
n2 − 2n− 3

n3 − 2
, and bn =

1

n
.

Then

an

bn

=
n(n2 − 2n− 3)

n3 − 2
=

1− 2
n
− 3

n2

1− 2
n3

, so lim
n→∞

an

bn

= 1 6= 0.

Since by an example above, the Harmonic series
∑∞

r=1
1
r

is divergent, we can

use the Second Comparison Test to deduce that
∞∑

r=1

r2−2r−3
r3−2

diverges. �

Exercise for student: try to prove the last result using the First Comparison
Test.

Remark In the last example we have cheated slightly as ar < 0 when r = 2.
The Comparison Test requires ar ≥ 0 for all r. However, this does not matter
because we can apply the test to

∑∞
r=3 ar and deduce that this is divergent.

Then
∑∞

r=1 ar must also be divergent. Thus the Comparison Tests can be

applied to series
∑∞

r=1 ar which have at most a finite number of negative
terms.

Appendix

Theorem 5.5 For k ∈ Z we have that

∞∑
r=1

1
rk

is
{

convergent if k ≥ 2
divergent if k ≤ 1.

Proof If k ≥ 2 then

0 <
1
rk
≤ 1

r2
.

for all r ∈ N. By Theorem 5.4,
∑∞

r=1
1
r2 is convergent. So by the First Comparison Test,

Theorem 5.2, we deduce that
∑∞

r=1
1
rk is convergent.

If k ≤ 1 then
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1
r
≤ 1

rk

for all r ∈ N. We have seen earlier that the Harmonic series,
∑∞

r=1
1
r , is divergent. So by

the First Comparison Test, Theorem 5.2, we deduce that
∑∞

r=1
1
rk is divergent. �

Note I have restricted to k ∈ Z in Theorem 5.5 since I have not defined rk when r ∈ N,
for a general k ∈ R. For example, how would we define 2

√
2 or 3π?

But we can define rk when k ∈ Q. For when k ∈ Q we can write k = p/q where
p ∈ Z and q ∈ N. Then we can define rk =

(
r1/q

)p
where r1/q is the positive real root of

xq − r = 0.

With this definition we can extend Theorem 5.5: Let k ∈ Q. Then

∞∑
r=1

1
rk

is
{

convergent if k > 1
divergent if k ≤ 1.

This shows that the case k = 1, the Harmonic series, is on the boundary between
convergence and divergence. In particular, it diverges but it does so slowly.
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