Section 5 Series with non-negative terms

Theorem 5.1 Let Y 7, a, be a series with non-negative terms and let s,
be the n-th partial sum for each n € N. Then > 7 a, is convergent if, and
only if, {s, }nen is bounded.

Proof Since a, > 0 for all » € N, then s,41 — 8, = apy1 > 0, 1€, Spyq > Sy
for all n > 1 and so the sequence {s, },en of partial sums is increasing.

(=) If Y2, a, converges then {s,}nen converges by definition. Hence,
by Theorem 3.2, {s,}nen is bounded.

(<) Conversely, if {s, }nen is bounded then, in particular, it is bounded
above. Since {s, }nen is also increasing, then {s, },en is convergent by The-
orem 3.4. Thus we have verified the definition that >~ a, is convergent.ll
Remark If the series of non-negative terms >~ a, is convergent, the se-

quence {$;, }nen is convergent and its limit, which is the sum of the series, is
the lub{s, : n € N}. (See Theorem 3.4.)

The next result is a way of testing convergence or divergence by compar-
ison with a known series.

Theorem 5.2 (First Comparison Test)

Let Y 2, a, and > 2 b, be series with 0 < a, < b, for all r € N.
(i) If >=7 | b, is convergent then » ° a, is convergent. If Y °° b, has sum
7 and ) 7, a, has a sum o, then o < 7.

(ii) If 7, a, is divergent, then >~ b, is divergent.

Proof

(i) Let s, and ¢, be the n* partial sums of > 7 a, and Y 2 b,, re-
spectively. As in the proof of Theorem 5.1 both {s,}, .y and {t,}, .y are
increasing sequences.

By hypothesis, {¢, }nen is convergent with limit 7. But {¢, },ey is increas-
ing, so by Theorem 3.4, 7 is the least upper bound of {t, : n € N}.
Since 0 < a, < b, for all r € N, we have that

0< zn:ar < zn:bfm
r=1 r=1

ie. 0 <s, <t, for all n € N. Thus all the s,, are no greater than any upper
bound of {t,, : n € N}, that is, s, < 7 for all n € N. So 7 is an upper bound
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for {s, : n € N}.

Then, since {$, }nen is also increasing, we have again by Theorem 3.4 that
{8n}nen is convergent with limit o = lub{s, : n € N}. Being the least of all
upper bounds o is less than or equal to any upper bound of the {s, : n € N}.
In particular, o < 7.

(ii) Again, this is simply the contrapositive of part (i) (See the appendix
within section 3 of these notes.) |

Example Show that 7 5717 is convergent and ) 2| =5 is divergent.

Solution Firstly,

1 1
0< < o
r+1 73"

and Y7 3= converges since it is a Geometric Series with ratio 3 (See The-

orem 4.1). Hence our series converges.
Secondly,

0<

S |

<1
Y

and the fact that Zfil% diverges is an earlier example. Hence our series

diverges. ]
See also Question 6 Sheet 5

Theorem 5.3 (Second Comparison Test)
Let > 72 a, and > 2 b, be series such that a, > 0 and b, > 0 for all

r € N. Suppose that the sequence {Z—”} is convergent with limit ¢ £ 0.
" J neN

Then )7 | a, is convergent if and only if Y >, b, is convergent.
Proof

Suppose that lim,,_, Z—: = (. Since a,, > 0 and b, > 0 we have Z—: >0
and thus ¢ > 0. But, by assumption, ¢ # 0, hence ¢ > 0.

We now apply Lemma 3.6, concluding that there exists Ny € N such that

{  a, 3_€

1
250, 2 (11)

for all n > N,.
(=) First suppose that >~ a, is convergent.



By Theorem 4.2 3 \ "a, is convergent.
By Theorem 4.4 37 2a, is convergent.
From (11) we have

2
O<bn<zan

for all n > Ny. So, by the First Comparison Test, Y - N, br 18 convergent.
Finally, by Theorem 4.2 again, Y >, b, is convergent.

(<) Conversely, suppose that > 2 b, is convergent.
By Theorem 4.2 3 \ b, is convergent.
By Theorem 4.4 Y77 . %b, is convergent.

This time we use (11) in the form

3¢
0<a, < —0b,
<a 5

for all n > Ny. So, by the First Comparison Test, Y > No a,, is convergent.
Again) "7  a, is convergent, justified by Theorems 4.2. |

Note If the sequence {a, /b, },y is either divergent or has a zero limit then

Theorem 5.3 tells us nothing. We have to either choose a different series > b,
for comparison or use a different test on our given series > a,..

We can use the Comparison tests to prove the following..
Theorem 5.4

o

1
-2
r=1 r
is convergent.

Solution. As before, the idea is to compare this series with

o0

;7“7"+1

This may not look a “simpler” series but we saw in Theorem 4.8 that it is
easy to sum.

Let a,, = # and b,, = Then = = 1+— and so llmn_,oO =1+#0.

n(n+1) b

Hence by the Second Comparison test, Theorem 5.3, > | = 518 convergent.l



Excercise for students; try to show that >, 1%2 converges, with sum less

than 2, using the First Comparison Test.

Note In later courses it will be shown that )2, 12 has sum 72 /6.

Theorem 5.4 For k& € Z we have that

i 1 s { convergent if k > 2

— ¥ divergent if £ < 1.

Proof (Left to student)

Example Test the series

2r2 4+ 2r + 1
— Corh+2
for convergence.
Solution
Rough work

For large 7, 2r* + 2r + 1 is dominated by 2r* (i.e. if 7 = 1,000 then 2r?
differs from 2r% + 2r +1 by less than 0.1%). Similarly r® + 2 is dominated by
75, so for large r the sum will “look like” > 7«% which we know, by Theorem

5.4, converges.

End of rough work

Let
o2n? 4+ 2n + 1 1
an, noAent , and b, = —.
n® + 2 n3
Then
a, n*@2n*+2n+1) 2+24+3%
nT T owrr T aig 0 dmg=2ee

Since, by Theorem 5.4, Y 2, }3 is convergent, we can use the Second
Comparison Test to deduce that >, WT}E—_ZH converges. ]
Example Test the series

“r2—2r—3
Z%

for convergence.



Proof
Rough work

For large r the general term of this series will “look like’ .

5= %, the sum

Y

of which we know diverges.
End of rough work

Let
n?—2n—3
an = R , and b, =
Then
an nn*—2n-3) 1-2-35 .y
b= =5 =1 3 % nh—{EoE:17AO'

Since by an example above, the Harmonic series >~ | % is divergent, we can

o
use the Second Comparison Test to deduce that ) ri‘ff; 3
r=1

diverges. ]

Exercise for student: try to prove the last result using the First Comparison
Test.

Remark In the last example we have cheated slightly as a,, < 0 when r = 2.
The Comparison Test requires a, > 0 for all r. However, this does not matter

because we can apply the test to > -, a, and deduce that this is divergent.
Then > 7 a, must also be divergent. Thus the Comparison Tests can be

applied to series > 7 a, which have at most a finite number of negative
terms.

Appendix

Theorem 5.5 For & € Z we have that

i 1 : convergent if k > 2
rk ° divergent if k < 1.

r=1

Proof If k> 2 then

0< <

1 1
for all r € N. By Theorem 5.4, 2, %2 is convergent. So by the First Comparison Test,
Theorem 5.2, we deduce that Y - %k is convergent.

If £ <1 then



1
=<
T

1
rk

for all r € N. We have seen earlier that the Harmonic series, Y-, %, is divergent. So by

the First Comparison Test, Theorem 5.2, we deduce that Z?‘;l Tik is divergent. ]

Note I have restricted to k € Z in Theorem 5.5 since I have not defined r* when r € N,

for a general k € R. For example, how would we define 2V2 or 377

But we can define r* when k € Q. For when k € Q we can write k = p/q where
p € Z and g € N. Then we can define 7* = (r/9)” where /4 is the positive real root of
9 —7r=0.

With this definition we can extend Theorem 5.5: Let k& € Q. Then

i 1 i convergent if k > 1
rk divergent if k£ < 1.

r=1

This shows that the case £ = 1, the Harmonic series, is on the boundary between

convergence and divergence. In particular, it diverges but it does so slowly.



