
Section 3 Sequences and Limits
Definition A sequence of real numbers is an infinite ordered list a1, a2, a3,
a4, ... where, for each n ∈ N, an is a real number. We call an the n-th term
of the sequence.

Usually (but not always) the sequences that arise in practice have a recog-
nisable pattern and can be described by a formula.

Examples Find a formula for an in each of the following cases:

(i) 1,
1

2
,
1

3
,
1

4
, ... , an =

1

n
for all n ∈ N,

(ii) 1,−1, 1,−1, ... , an = (−1)n+1 for all n ∈ N,

(iii)
1

2
,
3

4
,
7

8
,
15

16
, ... , an =

2n − 1

2n
for all n ∈ N,

(iv) 2, 2, 2, 0, 0, 0, 0, 0, 0, ... , an = 2 if n ≤ 3, an = 0 if n ≥ 4,

(v) 1, 1, 2, 3, 5, 8, 13, ... , an = an−1 + an−2 for all n ≥ 3,
along with a1 = a2 = 1.

See also Question 5 Sheet 2.
Conversely we can define a sequence by a formula.

Example Let

an =

{
2n if n odd
n if n even

for all n ∈ N.

Then we get the sequence 2, 2, 8, 4, 32, 6, ... .

Exercise for student: Show this formula can be written as

an =

(
1 + (−1)n

2

)
n +

(
1 + (−1)n+1

2

)
2n.

Note A sequence is different to a set of real numbers - the order of the terms
is important in a sequence but irrelevant in a set. For instance, the sequence
1, 1

3
, 1

4
, 1

5
, ... is different from the sequence 1

3
, 1, 1

4
, 1

5
, ..., even though the sets{

1, 1
3
, 1

4
, 1

5
, ...

}
and

{
1
3
, 1, 1

4
, 1

5
, ...

}
are identical.

We denote a sequence a1, a2, a3, ... by {an}n∈N or {an}n≥1 or just {an} if

there is no confusion. For example
{

2n−1
2n

}
is sequence (iii) above.

The set containing the sequence is written as {an : n ∈ N}.
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Definition A real number ` is said to be a limit of a sequence {an}n∈N if,
and only if,

for every ε > 0, there exists N ∈ N such that |an − `| < ε for all n ≥ N

or, in mathematical notation,

∀ε > 0,∃N ∈ N : ∀n ≥ N, |an − `| < ε.

Note. To check, or verify that this definition holds we have to:

(i) Guess the value of the limit `,

(ii) Assume ε > 0 has been given,

(iii) Find N ∈ N such that |an − `| < ε, i.e. ` − ε < an < ` + ε for all
n ≥ N.

We have to be able to find such an N for each and every ε > 0 and, in
general, the N will depend on ε. So you will often see N written as a function
of ε, i.e. N(ε).

See Questions 8 and 9 Sheet 2

Definition A sequence which has a limit is said to be convergent. A
sequence with no limit is called divergent.

Example The sequence
{

1
n

}
n∈N is convergent with limit 0.

Solution This is simply the Archimedean Principle. We have to verify the
definition above with ` = 0.

Let ε > 0 be given. (So we have no choice over ε, it can be any such
number.)

The Archimedean Principle says that we can find N ∈ N such that 1
N

< ε.
But then, for all n ≥ N we have∣∣∣∣ 1n − 0

∣∣∣∣ =
1

n
≤ 1

N
< ε.

Hence we have verified the definition with ` = 0 which must, therefore,
be a limit of the sequence

{
1
n

}
n∈N. �

The question remains whether the sequence
{

1
n

}
n∈N has other limits.

Note how in the definition I talked about ` being a limit, not the limit. The
following result answers this in the negative.
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Theorem 3.1 If a sequence of real numbers {an}n∈N has a limit, then this
limit is unique.

Proof by contradiction.

We hope to prove “For all convergent sequences the limit is unique”.
The negation of this is “There exists at least one convergent sequence

which does not have a unique limit”.
This is what we assume.
On the basis of this assumption let{an}n∈N denote a sequence with more

than one limit, two of which are labelled as `1 and `2 with `1 6= `2.

Choose ε = 1
3
|`1 − `2| which is greater than zero since `1 6= `2.

Since `1 is a limit of {an}n∈N we can apply the definition of limit with our

choice of ε to find N1 ∈ N such that

|an − `1| < ε for all n ≥ N1.

Similarly, as `2 is a limit of {an}n∈N we can apply the definition of limit with

our choice of ε to find N2 ∈ N such that

|an − `2| < ε for all n ≥ N2.

(There is no reason to assume that in the two uses of the definition of
limit we should find the same N ∈ N for the different `1 and `2. They may
well be different which is why I have labelled them differently as N1 and N2.)

Choose any m0 > max(N1, N2), then |am0 − `1| < ε and |am0 − `2| < ε.
This shows that `1 is “close to” am0 and `2 is also “close to” am0 . Hence we
must have that `1 is “close to” `2. Using the Triangle inequality, Theorem
1.2, we can remove the am0 in the following way: (TRICK)

|`1 − `2| = |`1 − am0 + am0 − `2| “adding in zero”

≤ |`1 − am0|+ |am0 − `2|, triangle inequality,

< ε + ε, by the choice of m0,

= 2ε = 2
3
|`1 − `2|, by the definition of ε.

So we find that |`1 − `2|, which is not zero, satisfies |`1 − `2| < 2
3
|`1 − `2|,

which is a contradiction.

Hence our assumption must be false, that is, there does not exist a se-
quence with more than one limit. Hence for all convergent sequences the
limit is unique. �
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Notation Suppose {an}n∈N is convergent. Then by Theorem 3.1 the limit
is unique and so we can write it as `, say. Then we write limn→∞ an = ` or
Ln→∞an = ` or an → ` as n →∞.

In particular, the above example shows that

lim
n→∞

1

n
= 0.

Example What is the limit of
{
1 +

(
−1

2

)n}
n∈N?

Solution Rough work
The first few terms are: 1

2
, 5

4
, 7

8
, 17

16
, 31

32
, ... .

It appears that the terms are getting closer to 1.

To prove this we have to consider |an − 1| =
∣∣(1 +

(
−1

2

)n)− 1
∣∣ =

(
1
2

)n
.

n 1 2 3 4 5 6 7 8 9 10
|an − 1| 1

2
1
4

1
8

1
16

1
32

1
64

1
128

1
256

1
512

1
1024

Let ε > 0 be given. We have to show that there exists N ∈ N such that
|an − 1| < ε for all n ≥ N.

Consider some particular choices of ε.

ε = 1
10

: for all n ≥ 4 |an − 1| = 1
2n ≤ 1

16
< ε,

ε = 1
100

: for all n ≥ 7 |an − 1| < 1
128

< ε,

ε = 1
1000

: for all n ≥ 10 |an − 1| < 1
1024

< ε.

Note how these values of N , namely 4, 7, 10, etc., get larger as ε gets
smaller.

End of rough work

Completion of solution. By the Archimedean property we can find N ∈ N
such that 1

N
< ε. For any n ∈ N we have 2n > n and so, for all n ≥ N we

have

|an − 1| = 1

2n
<

1

n
≤ 1

N
< ε

as required. �
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Examples Discuss the convergence or otherwise of the following sequences.

(i) 2, 2, 2, ... , convergent limit 2,

(ii) 21
2
, 21

3
, 21

4
, ... , convergent limit 2,

(iii) 3 + 2, 3− 2
2
, 3 + 2

3
, 3− 2

4
, ... , convergent limit 3,

(iv) 1, 2, 1, 2, ... , divergent,

(v) 1
2
, 11

2
, 1

3
, 11

3
, 1

4
, 11

4
, ... , divergent,

(vi) 2, 4, 6, 8, ... , divergent,

(vii) −1,−4,−9,−25, ... . divergent.

Example Show, by using the Archimedean principle to verify the definition,
that sequence (iii) has limit 3.

Solution
Rough work
The nth term can be written as

an = 3 +
(−1)n+12

n
.

So, |an − 3| = 2
n
. We will want to find N ∈ N such that 2

n
< ε for all n ≥ N ,

i.e. 1
n

< ε
2

for such n. Again we will do this by the Archimedean Principle.

End of Rough work

Proof
Let ε > 0 be given. By the Archimedean property we can find N ∈ N

such that 1
N

< ε
2
. Then for all n ≥ N we have

|an − 3| = 2

n
≤ 2

N
< ε

as required. �

Definition A sequence {an}n∈N is said to be bounded if the set {an : n ∈ N}
= {a1, a2, a3, a4, ...} is bounded.

Similarly a sequence is said to be bounded above or bounded below if the
set is bounded above or bounded below respectively.

Example 1, 2, 1, 2, 1, 2... is a bounded sequence.
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Theorem 3.2 If {an}n∈N is a convergent sequence, then {an}n∈N is a bounded
sequence.

Proof
Let ` be the limit of {an}n∈N. In the definition of limit choose ε = 1 to

find N ∈ N such that |an − `| < 1 for all n ≥ N. Rewriting, this says that

`− 1 < an < ` + 1, for all n ≥ N,

or that the set {aN , aN+1, aN+2, ...} is bounded.

Yet the set {a1, a2, a3, ...aN−1} is bounded, above by max {ai : 1 ≤ 1 ≤ N − 1}
and from below by min {ai : 1 ≤ 1 ≤ N − 1} . These maximum and mini-
mums can be calculated simply because the set is finite.

If A, B are bounded sets then A ∪B is bounded.
(Exercise, prove this, but see also Question 3, sheet 2)

Hence {a1, a2, a3, ...aN−1} ∪ {aN , aN+1, aN+2, ...} = {a1, a2, a3, ...} is
bounded as is, therefore, the original sequence. �

Corollary 3.3 If {an}n∈N is an unbounded sequence, then {an}n∈N is diver-
gent.

Proof : This is just a restatement of Theorem 3.2.

The statement of Theorem 3.2 is of the form “If p then q”, often written
as “p ⇒ q”. This has been discussed in the appendix to part 2. We also
saw there that we represent the negation of a proposition p as ¬p. In other
words, ¬p means that p does not hold.

If we had both p ⇒ q and ¬q ⇒ p we could combine to deduce ¬q ⇒
p ⇒ q, i.e. ¬q ⇒ q. It would be a strange world if, assuming that q does
not hold we could then deduce that q did hold. For this reason we say that
p ⇒ q and ¬q ⇒ p are inconsistent.

Without proof I state that p ⇒ q and ¬q ⇒ ¬p are consistent. In fact
they are logically equivalent in that if one statement is false than so is the
other and if one is true then so is the other. See the appendix to part 2
for more details of equivalence. We say that ¬q ⇒ ¬p is the contrapositive
of p ⇒ q. The statement of Corollary 3.3 is simply the contrapositive of
Theorem 3.2. �

Example The sequence 11
2
, 21

3
, 31

4
, 41

5
, ... is not bounded above and thus it

is divergent.

Proof by contradiction.
Assume the sequence is bounded above by λ, say. By the alternative

Archimedean principle, Theorem 2.1´, we can find n ∈ N such that n > λ.
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But then n + 1
n+1

is an element of the sequence satisfying n + 1
n+1

> n > λ,

which is a contradiction.
Hence our assumption is false, thus the sequence is not bounded above.�

Definition A sequence {bn}n∈N is called a subsequence of {an}n∈N if, and

only if, all of the terms of {bn}n∈N occur amongst the terms of {an}n∈N in

the same order.

Examples

(i) an = 1
n
, bn = 1

2n
, so

{an}n∈N =

{
1,

1

2
,
1

3
,
1

4
,
1

5
,
1

6
, ...

}
and

{bn}n∈N =

{
1

2
,
1

4
,
1

6
,
1

8
,

1

10
, ...

}
which is a subsequence of {an}n∈N.

(ii) 31
32

, 63
64

, 127
128

, ... , is a subsequence of 1
2
, 3

4
, 7

8
, 15

16
, 31

32
, 63

64
, 127

128
, ... .

(iii) 1
4
, 1

2
, 1

6
, 1

8
, 1

10
, ... , is not a subsequence of 1

2
, 1

3
, 1

4
, 1

5
, 1

6
, ... .

Notes (a) We can look upon a subsequence {bn}n∈N as the original sequence,

{am}m∈N , with terms deleted and the remaining ones relabelled. For exam-

ple:

a1	 a2	 a3	 a4	 a5	 . . .	 am-1	 am	 am+1	 . . .

	  

	 b1	 b2	 	 b3	 . . .	 	 bn	 bn+1	 . . .	

From this we can see that each bn comes from some am where n and m
satisfy

m = n + (the number of ai, 1 ≤ i ≤ m− 1, that have been deleted).

In particular m ≥ n. Hence we have

∀n ≥ 1,∃m ≥ n : bn = am.
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The fact that the relabelling retains the ordering means that if bn = am

and bn′ = am′ then n ≥ n′ if, and only if, m ≥ m′.

(b) Example (ii) illustrates the common method of forming a subsequence
by omitting a finite number of initial terms of a given sequence.

Theorem 3.4 If a sequence converges then all subsequences converge and
all convergent subsequences converge to the same limit.

Proof Let {an}n∈N be any convergent sequence. Denote the limit by `.

Let {bn}n∈N be any subsequence.

Let ε > 0 be given. By the definition of convergence for {an}n∈N there

exists N ∈ N such that |an − `| < ε for all n ≥ N . But this value N will
also work for {bn}n∈N. This is because if n ≥ N then bn = am for some

m ≥ n ≥ N and so |bn − `| = |am − `| < ε. Thus |bn − `| < ε for all n ≥ N
as required. �

Question What is the contrapositive of Theorem 3.4?

Question What is the negation of “all subsequences converge and all con-
vergent subsequences converge to the same limit.”?

In logic, if it is not the case that both p and q holds then either p does
not hold or q does not hold. We could write this as saying “not (p and q)”
is logically equivalent to “either (not p) or (not q)”. Thus, the negation of
“all subsequences converge and all convergent subsequences converge to the
same limit” is “either (not all subsequences converge) or (not all convergent
subsequences have the same limit)” This is the same as “either (there exists
a diverging subsequence) or (there are two converging subsequences with
different limits).”

So the contrapositive of Theorem 3.4 is:

Corollary 3.5 If {an}n∈N is a sequence that either has a subsequence that

diverges or two convergent subsequences with different limits then {an}n∈N
is divergent.

Example The sequence 1, 2, 1, 2, 1, 2, ... is divergent.

Solution Consider the two subsequences 1, 1, 1, ... and 2, 2, 2, ..., both con-
vergent though with different limits, 1 and 2. Hence by the Corollary the
sequence 1, 2, 1, 2, 1, 2, ... diverges. �

Example The sequence 1, 2, 3, 1, 2, 3, 1, 2, 3, ... is divergent.

Solution Our sequence has a subsequence 1, 2, 1, 2, 1, 2, ... which, by the pre-
vious example, is divergent. Hence by the Corollary the sequence 1, 2, 3, 1, 2, 3, 1, 2, 3, ...
diverges. �
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Note The sequence 1, 2, 3, 1, 2, 3, 1, 2, 3, ... is bounded but divergent. Thus,
{an}n∈N being bounded doesn’t necessarily mean it is convergent.

Remember these results as

sequence convergent ⇒ sequence bounded,
but

sequence bounded ; sequence convergent.

Aside Something you might try to prove

Theorem Every bounded sequence has a convergent subsequence.

Proof Not given

End of aside.

Definition A sequence {an}n∈N is said to be increasing (or non-decreasing)

if an ≤ an+1 for all n ∈ N. (So a1 ≤ a2 ≤ a3 ≤ a4 ≤ ... .)

A sequence {an}n∈N is said to be decreasing (or non-increasing) if

an ≥ an+1 for all n ∈ N. (So a1 ≥ a2 ≥ a3 ≥ a4 ≥ ... .)

A monotone sequence is one that is either increasing or decreasing.

A sequence is strictly increasing if an < an+1 for all n ∈ N, is strictly
decreasing if an > an+1 for all n ∈ N and is strictly monotone if it is
either strictly increasing or strictly decreasing.

Theorem 3.6 Let {an}n∈N be a increasing sequence which is bounded above.

Then the sequence converges with limit lub{an : n ∈ N}.
Proof

The set {an : n ∈ N} is non-empty is bounded above by the assumption
of the theorem. So, by the Completeness of R, Property 10, the set has a
least upper bound. Denote lub{an : n ∈ N} by β.

We have to verify the definition of convergence with limit β.

Let ε > 0 be given. By Theorem 2.2 there exists N ∈ N such that
β − ε < aN .

(In words: β is the least of all upper bounds, but β − ε is less than β so
cannot be an upper bound and thus must be less than some element in the
set.)

Since the sequence is increasing we have

β − ε < aN < aN+1 < aN+2 < ...,
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that is, β − ε < an for all n ≥ N .

But β is an upper bound for the set so

β − ε < an ≤ β < β + ε or |an − β| < ε

for all n ≥ N .

Thus we have verified the definition of convergence with limit β = lub{an :
n ∈ N}. �

Theorem 3.7 Let {an}n∈N be a decreasing sequence which is bounded below.

Then glb{an : n ∈ N} is the limit of {an} and so, in particular, {an}n∈N is
convergent.

Proof
Similar to that of Theorem 3.6 and is left as an exercise. �

Example Let an = n
n+1

for all n. Show that {an}n∈N is convergent.

Solution
Rough work.
Looking at the first few terms 1

2
, 2

3
, 3

4
, 4

5
, ... they appear to be getting larger.

So we might hope to prove

n

n + 1
≤ n + 1

n + 2
,

i.e. n(n+2) ≤ (n+1)2 or n2 +2n ≤ n2 +2n+1 which is obviously true. We
then have to show that the sequence is bounded above and we might guess
by 1. So we need n

n+1
≤ 1, i.e. n ≤ n + 1, again true.

(Again this is not a proof since we have started with what we wanted to
prove, deducing true statements, which is the wrong way round.)

End of rough work.

Proof
For all n ∈ N we have

0 < 1

⇒ n2 + 2n ≤ n2 + 2n + 1

⇒ n(n + 2) ≤ (n + 1)2

⇒ n

n + 1
≤ n + 1

n + 2

Hence the sequence is increasing.

Also, for all n ∈ N we have n ≤ n + 1 in which case n
n+1

≤ 1. Hence the
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sequence is bounded above.
Therefore, by Theorem 3.6 the sequence is convergent. �

Note Using this method we have not found the value of the limit. To do so,
we would have to calculate lub {n/ (n + 1) : n ∈ N} . The strength of using
either Theorem 3.6 or 3.7 is that we do not need to guess the value of the
limit.
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Appendix

In the appendix to part 2 we discussed “if p then q” or “p ⇒ q” when p and q are
propositions. I said there that the compound proposition p ⇒ q is false only when p is
True and q False (we never want something false to follow from something true). In all
other cases p ⇒ q is defined to be True.

Consider now the contrapositive, “if not q then not p”, or “(¬q) ⇒ (¬p)”. When is
this False? It is False iff ¬q is True and ¬p False, i.e. iff q is False and p True, i.e. iff
p ⇒ q is False. So p ⇒ q and (¬q) ⇒ (¬p) are equivalent in that whatever truth values
are given to p and q these two compound propositions have the same truth value.

Note, the converse of “if p then q” is “if q then p”, i.e. the converse of p ⇒ q is q ⇒ p.
These are not equivalent. For instance, if p is True and q is False then p ⇒ q is False
while q ⇒ p is True.
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