153 Problem Sheet 6

All questions should be attempted. Those marked with a ** must be
handed in for marking by your supervisor. Hopefully the supervisor will
have time to cover at least the questions marked with a * or **. Questions
marked with a # will be discussed in the problems class. Those marked with
H are slightly harder than the others.

1**) Use the Alternating Series Test to show that the following series con-
verge.
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2*%) Prove that the following series are convergent by proving they are abso-
lutely convergent.

where —1 < z < 1 in part (iii).

3#) Show that the following series are conditionally convergent.

r+1 0 -1 r+1 1 3
(ii) Z b where b, =n + 3 +

(-

00
r=1 r=1

Hint: In part (i) write out the first few terms of the series and evaluate the
first few partial sums. There should be a lot of cancellation in these partial
sums.

4#) Determine whether the following series converge or diverge.
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5#) (i) Write down the first few values of
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in (— — = 0,1,2,3,4,5, ...
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cos(%—l—ng), n = 0,1,2,3,4,5,... .

(ii) Use (i) to derive a simple expression for
tan (Z + n%) , for all n > 0.

Can you give a proof for your result?

(iii) Use (ii) to prove that

is conditionally convergent.

6*) (i) Give an example of a convergent series »  a, for which > 7
diverges.
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(ii) Give an example of a convergent series ) - | a, and a convergent sequence
{bn},>1 with lim,, ., b, = 0 for which Y2, aqb, diverges.

(iii) Give an example of a convergent series 3°° | a, for which -°° (=1)"""a,
diverges.
7) (i) Can you use partial fractions to prove that
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converges? (Give your reasons.

Use an appropriate Comparison Test to prove that this series converges

8**) Use the Ratio Test to determine whether the following series are con-
vergent or divergent.
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9*) In the following series, of the form 7 a,, show that a,41 > a, for all

sufficiently large n. Hence deduce that these series diverge.
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Why can you not apply the Ratio Test to show these diverge?

10#) If you can use the ratio test to show that both 2, a, and ) 2 b,
converge what can you say of >~ a,b, and why?
11H) Is it possible to apply the Ratio Test to the series
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Does this series converge?

12#) (i) From Question 10 on Sheet 4 we know that
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for some constant 2 < ¢ < 3. Use this to show that
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(ii) Use the Ratio Test and (i) to see if
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converges or diverges.

(iii) What can you say of




13) (i) Show that r! <" for all » > 1.
(i) Deduce that
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diverges.
144) (i) Prove that the series > 2| — n 11” is convergent when |z| < 1 and
r

divergent when |z| > 1. What happens when z =1 or x = —17
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(ii) Determine all values of x for which the series )7, converges.

15%*) Determine the radius of convergence for the following power series.
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16#) (i) Give an example of a divergent series Y -, a, for which lim,,_ =1

an+1 o 1

(ii) Give an example of a convergent series Y - | a, for which lim,,
Qn

(iii) Show that the Harmonic series is an example of a divergent series Y - a,
for which lim,,_, ]anyl/" = 1.
Hint: Try to make use of Question 4 on the Additional Question Sheet .
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(iv) Give an example of a convergent series - | a, for which lim,, . |a,]| M= 1.

17*) Use Cauchy’s n-th root test to determine whether the following converge.
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18) Determine all values of x for which the following series converge.

(i) i(r;l) (ii) i <5+§>2x7‘,(m) f: <5+§>rxr

r=1 r=1



