153 Problem Sheet 5

All questions should be attempted. Those marked with a ** must be
handed in for marking by your supervisor. Hopefully the supervisor will
have time to cover at least the questions marked with a * or **. Questions
marked with a # will be discussed in the problems class. Those marked with
H are slightly harder than the others.

1#) Let
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(i) Show that {s, },en is an increasing sequence.

(ii) Justify the following bound,
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Hence, by verifying the conditions of Theorem 3.4, deduce that
1
> 5 ()
2
r=1 r

7
i

(The value of the limit is %2 = 1.64493..., but this is hard to show.)

is convergent with sum no greater than

2) Let > 2, a, be a series of non-negative terms which is convergent with
sum o. Let {b, },en be a subsequence of {a, }nen-

Prove that ), b, is convergent with its sum 7 satisfying 7 < 0.

(Hint: Show that o is an upper bound for {¢, : n € N}, where ¢, is the n-th
partial sum for the series > = b,.)

3*) Prove that the following series are divergent.
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(Hint: Apply Corollary 4.6 and, for part (ii), use Question 2 on Sheet 3.)
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Recall that we saw in the notes that s, > /n for all n > 1.
(i) Prove that for all r € N we have
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(Hint: Use () from Question 2 on Sheet 3 twice.)
(i) Deduce

Wn—1>s,>2vn+1+1-2V2

for all n > 1 and further show

Wn—1>s,>2/n+1-2V2+
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5)(i) Let {an}, oy be a convergent sequence with limit ¢. Prove that

lim (ap41 — a,) = 0.

(Hint: Look at |an+1 — €+ € — a,)]).

(ii) Give an example of an increasing sequence {a,},b -, that is not bounded
above (and so diverges) but for which

lim (a,41 — a,) =0.

(Hint: Think about using the Harmonic series in some way.)



6#) Use the First Comparison Test to determine whether the following series
are convergent or divergent.
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7**) Use the Second Comparison Test to determine whether the following
series are convergent or divergent.
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8%) Use the Alternating Series Test to prove that the following series are
convergent.
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(Hint: In part (ii) look back at Question 2a(ii) on Sheet 3.)



