
Appendix 1.2

1. Do not mix up the definitions for limx→a f(x) = c with a finite limit
c ∈ R and limx→a f(x) = +∞ or −∞.

For limx→a f(x) = +∞ we do not look at |f(x)−∞| for x close to a

since ∞ is not a real number and thus f(x)−∞ has no meaning.

Do not use the quotient rule when trying to prove that a limit is infinite.

Example 1.2.13 We cannot say

lim
x→1

1

(x− 1)2
=

1

limx→1 (x− 1)2

because limx→1 (x− 1)2 = 0 which is excluded from the Quotient Rule.
If you continue you get

lim
x→1

1

(x− 1)2
=

1

limx→1 (x− 1)2
=

1

0

which is not defined (and in particular it is not equal to +∞).

2. Proof of the Sum Rule for limits. If limx→a f(x) = L and limx→a g(x) =
M then

lim
x→a

(f + g) (x) = L+M.

Let ε > 0 be given.

From the definition of limx→a f(x) = L we find δ1 > 0 such that

0 < |x− a| < δ1 =⇒ |f(x)− L| < ε/2. (11)

From the definition of limx→a g(x) = M we find δ2 > 0 such that

0 < |x− a| < δ2 =⇒ |g(x)−M | < ε/2. (12)

Let δ = min (δ1, δ2). Assume 0 < |x− a| < δ. For such x both (11) and
(12) hold. Thus

|(f(x) + g(x))− (L+M)| = |f(x)− L+ g(x)−M |

≤ |f(x)− L|+ |g(x)−M |

by triangle inequality,

< ε/2 + ε/2

= ε.
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Thus we have verified the definition of

lim
x→a

(f + g) (x) = L+M.

�

3. Limits of Rational Functions. In the lectures we have shown that
the limit of a rational function at a point is the value of the rational
function at that point, provided that value is defined. So assume we
are given a rational function r(x) = p(x)/q(x) and a point a for which
q(a) 6= 0 (so r(a) is defined). If we are required to verify the definition
that limx→a r(x) = r(a) we need examine

|r(x)− r(a)| =

∣

∣

∣

∣

p(x)

q(x)
−

p(a)

q(a)

∣

∣

∣

∣

=

∣

∣

∣

∣

p(x) q(a)− p(a) q(x)

q(x) q(a)

∣

∣

∣

∣

.

The numerator here, p(x) q(a)− p(a) q(x), is a polynomial that is zero
when x = a. This means is has a factor of x− a, i.e.

p(x) q(a)− p(a) q(x) = (x− a)m(x) ,

for some polynomial m(x). Then

|r(x)− r(a)| = |x− a|

∣

∣

∣

∣

m(x)

q(x) qv (a)

∣

∣

∣

∣

.

The verification proceeds by assuming 0 < |x− a| < δ, which is applied
to the first term. Then assume δ ≤ C for some constant C for which
the second term m(x)/q(x) q(a) is defined on |x− a| < C. Then an
upper bound M > 0 is found for this term, i.e.

∣

∣

∣

∣

m(x)

q(x) q(a)

∣

∣

∣

∣

≤M

for |x− a| < C. It suffices then to choose δ = min (C, ε/M).
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