MATH10242 Sequences and Series:
Solutions 3, to exercises for week 4 Tutorials,

Question 1: Which of the following sequences converge (and to what number)? Justify
yOUur answers.
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(c) n?+1—n),>1 [Hint: Use the ideas we used for /n + 2 — \/n]
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Solution: (a) It is a good idea to manipulate the messy function of n into something
nicer. The key idea is to divide top and bottom by n?,
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Now it is easy—if we pick N = [1/2¢]+1 then (with the usual manipulation)) N > 1/2¢
and ﬁ < e. For n > N the earlier computations show that

13713+n2+1_ 11+1_ 1_1<1<
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In other words lim a, = —1/2.
n—oo

Remark: By the time you read this we will have done the Algebra of Limits Theorem.
So you could use that and argue as follows:
We know from the lectures that lim, ., 1/n = 0. Hence

(b) Have a look at the function to try to get an idea of it before just starting to compute.
Dividing top and bottom by n, we have
3n*+n® 3+4n
2n2 2

_3+n
22

which is certainly not bounded above. Hence our sequence 1 — (3n? + n?)/(2n?) is not
bounded below. Thus, by Theorem 2.3.9 it is also not convergent.
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(c¢) As we did on the previous sheet, we compute

*/n2+1—n=(\/”2"‘1_”)("”2"'1"‘”):((nz-i—l)—nQ): 1 |
it L VATt Vet ltn

Next, we want to use the Sandwich Theorem, which means we can get a “nicer” upper
bound. Since vn?+ 1+ n > vVn?+n = 2n, we get

1 1
O<vVni+l-n=— < —.
vni+l+n 2n
Finally, as we have seen before, (b,),>1 = (1/2n),>1 is a null sequence, and so by the

Sandwich Theorem, so is (vVn? +1—n),>;.

(d) This again looks like the sequence /2 + n — /n , but the behaviour is very different.
Indeed, in this case we can manipulate it to:

Van— Vi = Vavi- i = (Va- 1)V

Once again this is “clearly” not bounded (and it is fine if you finish the argument with
that comment). But if you want to go on to prove it more carefully: suppose, for a
contradiction, that the sequence is bounded above by, say, £. Then, for all n we have that
(V2 — 1)y/n < £ which, after manipulation, gives

ne O
W21

Since N is unbounded this is a contradiction.

for all n.

(e) Maybe you noticed that 0 < 37 < 27", By Lemma 3.1.6 (or the solution to Ex-
ercise 2(e) on the Week 3 sheet), lim,,~(27") = 0. Thus by the Sandwich Theorem
lim,, o (37") = 0.

(f) This is like Example 3.1.8. Using 3.1.6,

n? <n3_n3<n3_1
30 4n — 4n 9non T p2p2 g’

0<

As usual, lim, ,, 1/n = 0 and so by the Sandwich Theorem our given sequence has limit
0.

Question 2: Let (a,),>1 be a bounded, decreasing sequence. Prove that (a,)p>; is
convergent.

Solution: This is the natural variant of Theorem 2.5.3 (which considered increasing
sequences). There are two obvious proofs. First, you could take the proof of that theorem
and replace > by < and supremum by infimum in all the appropriate places. Or, you
could take a new sequence {b, = —a,} and apply Theorem 2.5.3 to that. Either is fine.

First Proof: Since the set S = {a, : n € N} is bounded, it has an infimum, £ say, by
the notes (explicitly Theorem 2.4.11). We will show that ¢ = lim,,_,, a,.

So let € > 0 be given. Arguing as in Lemma 13.2.6 there exists = € {a, : n € N} such
that £ — e < x < {+¢. Consequently ¢ < x < ¢ + ¢ since ( is a lower bound for S. Note
that £ = ay for some N and hence £ < ay <l + ¢.



For any n > N we have that a, < ay (since the sequence (a,),>; is decreasing) and
a, > ¥ ( since £ is a lower bound for S). Thus, for alln > N, { < a,, < { + ¢, as required.

Second Proof: So, we are given a sequence (ay,),>1 that is both decreasing and bounded
below; thus a,, < a,_; for all n and there exists ¢ with a,, > ¢ for all n. Now set b, = —a,,.
Then these two hypotheses mean that b, = —a, > —a,_1 = b,_1 and b, = —a, < —{. In
other words, (b,),>1 is a bounded above, increasing sequence.

By Theorem 2.5.3 it therefore has a limit, say m and, for all £ > 0 there exists N such
that m — e < b, < m, for all n > N. Taking negatives we get

for all € > 0 there exists IV such that —m +¢& > —b,, > —m, for all n > N.

In other words, (a,)n>1 = (—by)n>1 has limit —m.
Remark. An important point here is that:

(a) If (an)n>1 s a bounded increasing sequence then, by Theorem 2.5.3 it has a limit (.
This € satisfies £ > a,, for all n.

Proof: Just notice that ¢ was defined to be the supremum of {a,} and so must satisfy
{ > a,, for cach n.

(b) Similarly if (ay)n>1 is a bounded decreasing sequence then, by Question 2 it has a limit
¢. This 0 satisfies ¢ < a,, for alln.

Proof: Similar.

Question 3: a. Define the sequence (a,),>1 inductively by a; = 1 and a, 41 = a,, /3 + 1.
i. Prove that a, < 3/2 for all n > 1,
ii. Prove that (a,),>1 is an increasing sequence.

iii. What Theorem implies the sequence converges? Show that the limit is 4/3.
b. What happens if the starting value is a; = 47
Solution

i. Proof by induction. The base case is true, a; = 1 < 3/2.
Assume true for n =k, so a; < 3/2. Consider

Hence the result holds for n = k + 1 and thus, by induction, for all n > 1.

ii. By induction show that a,.1 —a, > 0 for all n > 1. For n = 1 this follows since
as =4/3 > 1 = ay. Assume the result is true for n = k, so ax;1 — ax > 0. Consider

apro — g1 = (ap1 /3 +1) — (ap /3 +1) = (aky1 — ap)/3 > 0,

by the inductive hypothesis. Hence the result is true for n = k£ + 1 and so, by induction,
for all n > 1. Thus (ay),>1 is an increasing sequence.

iii. The Monotone Convergence Theorem implies the sequence has a limit, ¢ say. Then,
by the Algebra of Limits,
Upe1 = ap/3+1—=0/3+1

as n — oo. That is, the sequence (ay41),>, converges to £/3 + 1. Yet (ani1),, is the
subsequence of (an)n21 obtained by omitting the first term and so, by a result in the
course, has the same limit ¢. Therefore £ = £/3 + 1 which gives £ = 3/2.
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Question 4 What is

\/2+\/2+\/2+\/ﬁ?

Hint Consider it the limit (if it exists) of

V2, 2+ V2, \/2+\/2+\/§, \/2+\/2+\/2+\/§,...

i.e 1.414..., 1.8477..., 1.961..., 1.990..., 1.997..., 1.999...

i. The evidence here is that the sequence is increasing. Prove it is.
ii. Is it bounded above? Prove that it is.

iii. What Theorem implies the sequence converges? Show that the limit is 2.

Further Hint Find an iterative definition of the sequence.

Solution Define the sequence by a; = V2 and apy1 = 2+ a, for alln > 1.
i. Proof by induction that a,,; > a, for all n > 1.

Base case, n = 1, follows from ay = V2 + V2>1250=a,.
Assume true for n = k so a1 > aj. Consider

ai+2 — ai+1 =2+ ap1) — (2+ar) =appr —ar >0

by the inductive hypothesis. Hence a;} g = az 41 and thus, since all terms are positive,
Ajyo > Agyp. S0 true for n = k + 1 and thus, by induction, for all n > 1.

ii. You have to guess a possible upper bound and then prove it is. From the (limited)
evidence we might guess 2. Certainly a; = V2 < 2 and if a; < 2 then a1 =2+ ap <
V24 2 = 2. Thus, by induction, the sequence is bounded above by 2.

iii By the Monotone Convergence Theorem the sequence converges. Let £ = lim,,_,, a, =
V2 + 1. By results in the course we have

Unir = V24 an — V2+1L

as n — oo. That is, the sequence (an41),~, converges to V2 +£. Yet (an41),5, is the
subsequence of (ay),~, obtained by omitting the first term and so, by a result in the
course, has the same limit /. That is

(= lim a,. 1 =V2+L.
n—oQ

The solutions of #2— /¢ —2 = 0 are £ = 2 and —1. Since the sequence is increasing and
started at 1 the limit must be positive, i.e. £ = 2.

Extra Question for Week 4: Suppose that p(z) and ¢(z) are polynomials with real
coefficients, and ¢(x) # 0. What is the limit of the sequence a,, = p(n)/q(n) as n — oc?



Solution: First, let’s get rid of a small point: there could be integer values n such that
q(n) = 0, so then a, is not defined. So either disqualify all ¢ with a positive integer
solution. Alternatively, use the fact that ¢ can have only finitely many solutions so, for
large enough n, we do have a, well-defined, so just ignore the finitely many undefined
values (after all, finitely many terms make no difference to the limit of a sequence).

Next, “it depends” is a correct answer, but a rather lazy one; surely you can do better
than that! So look at some particular examples to get an idea of what can happen. You
will probably see that if the degree of p is strictly bigger than that of ¢ then the sequence
is not convergent, if the degrees of p and ¢ are equal then the sequence converges to a
nonzero value (the leading coefficient (l.c.) of p divided by the leading coefficient of ¢),
and if the degree of p is strictly smaller than that of ¢ then the sequence converges to 0.

Once you see that, it’s kind of obvious, but can you prove it? You might come up with
a proof based on the procedure of dividing top and bottom by z% where d is the degree
of g, let’s write d = deg(q(z)) for degree.

You could (but don’t have to) use the division theorem for polynomials: divide p(z)
by ¢(z) to get a quotient and remainder: p(x) = g(z)a(z) + r(z) where a(z) and r(x)
are polynomials and the degree of r(x) = 0 is strictly smaller than the degree of ¢(z).
Therefore

~—

p(n) r(n)
a(n) + )"

S

3
Il
Il

~—

Then divide into the cases:

deg(p(x)) < deg(q(z))), so a(z) = 0;
deg(p(x)) = deg(q(x))), so a(z) is a constant (the l.c. of p divided by the l.c. of q)

deg(p(x)) > deg(q(x)), so a(z) is a polynomial of degree > 1, hence a,, — 00 as n — oc.
If we decide to go for a proper proof that the three cases converge/don’t converge as
stated above, then we can argue as follows.

Claim: if p(z),¢(z) are polynomials with degp(z) < degg(x) then

M — 0
q(n)
as n — oo.
Proof: Say p(z) =Y 1", a;z', q(z) = Z?:o biz', with the a;,b; € R, a,, # 0, b, # 0 and
degp(z) = m < k = degg(z). Consider p(x)/q(x) and divide top and bottom by z*, to
get
p(n) - EZO a’izi_k (*)
Q(n) Z?:O biZEi_k '

For the rest of the argument we substitute the integer variable n for x. Note that every
term in this expression is a negative power of n except the leading term on the bottom
line, which is bg. By the Algebra of Limits Theorem applied (a number of times) to (x)
and the already-proved-in-the-notes/easy-to-prove fact that n/ — 0 as n — oo whenever
J is a negative integer, we deduce that the limit of p(n)/q(n) as n — oo is 0/by = 0. As
claimed.

The other two cases are dealt with similarly or, note that the case we’ve just done
shows that the “fractional part” r(n)/q(n), of the quotient r(n)/q(n) has limit 0, so you
can concentrate on the other term, a(n), which is either a constant (which will therefore be
the limit) or a nonconstant polynomial (which is therefore unbounded, hence the sequence
is not convergent).




