

MATH10242 Sequences and Series: Solutions 1, to exercises for week 2 Tutorials

Question 1: Let $x \in \mathbb{R}$. Using just the axioms for ordered fields (A0–9) and (Ord 1–4) from Chapter 1 of the Notes, and breaking into the cases when x is either positive, negative or zero, show that $x^2 \geq 0$.

Solution: We break into three cases. If $x = 0$ then $x^2 = 0 \cdot 0 = 0 \geq 0$ (we showed in the lectures that $x \cdot 0 = 0$ for every x).

If $x > 0$ then (Ord 4) gives $x^2 = x \cdot x > x \cdot 0 = 0$.

Finally, by (Ord 1), the only remaining possibility is that $x < 0$. But if $x < 0$ then, adding $-x$ to each side and using (Ord 3), we get $x + (-x) < -x$, that is, using (A4), $0 < -x$. The first paragraph then gives $0 < (-x)^2$. We need to show that we can “pull the minus signs out the the brackets”. (Note that $(-x)^2$ means “the negative of x , squared”, whereas, $-(-(x^2))$ means “the negative of the negative of x^2 ” and it’s not obvious that these are equal, or that the latter is equal to x^2 .)

So: first we prove the rule $(-a)b = -(ab)$: we have $(-a)b + ab = (-a + a)b = 0 \cdot b = 0$ (using (A6), (A9) and what’s already been proved) so, by (A4), $(-a)b = -(ab)$. Therefore using this twice (and (A6)), we get $(-a)(-b) = ab$. In particular, $(-x)^2 = x^2$, which is what we needed to finish off this third case, and therefore the proof.

Question 2: Show, using just the axioms for ordered fields, that if $x, y > 0$ then $x > y \iff x^2 > y^2$.

Solution: Suppose that $x > y$. Then by (Ord 4) $x^2 = x \cdot x > x \cdot y$ and similarly $y \cdot x > y \cdot y$. Combining them (with (A6)) gives $x^2 > y^2$.

The same argument shows that, if $x < y$ then $x^2 < y^2$ (hence, by (Ord 1), $y^2 \not\leq x^2$) and if $x = y$ then (by what “=” means) $x^2 = y^2$ (so, again, $y^2 \not\leq x^2$). That is (again using (Ord 1)), if $x \not> y$ then $x^2 \not> y^2$. So we have shown $x^2 > y^2 \iff x > y$.

Question 3: Show, using just the axioms for ordered fields (including that $0 \neq 1$), that for all $x \in \mathbb{R}$ we have $x < x + 1$.

Solution: By (Ord 3) it will be enough to prove that $0 < 1$, so let’s do that first.

I’ll argue by contradiction, so suppose that $0 < 1$ is false. Then, by (Ord 1), either $0 = 1$ - which contradicts our assumption that $0 \neq 1$ - or $1 < 0$. So assume, aiming for a contradiction, that $1 < 0$. That is, $-(-1) < 0$ (we did the argument for that in the lectures). By (Ord 3) we deduce $-(-1) + (-1) < 0 + (-1)$ which, by (A4) and (A3), gives $0 < -1$. Then apply (Ord 4) to get $0 \cdot (-1) < (-1) \cdot (-1)$. The left-hand side is 0 (we showed this in the lecture) and, see the solution to Question 1, $(-1)(-1) = -(-1) = 1$. That is, $0 < 1$ - contradicting, by (Ord 1), the assumption that $1 < 0$.

Thus we deduce that $0 < 1$. Now add x to both sides and (Ord 3) gives us $x < x + 1$. [There will be many ways of proving this, maybe some more direct than the argument I’ve given.]

Another solution, found by a student: Take any $x \neq 0$; by Question 1, $x^2 \geq 0$, in fact, $x^2 > 0$ because, if $x^2 = 0$ then, multiplying both sides by $1/x^2$, we’d deduce $1 = 0$, contradiction. Since also $1/x \neq 0$ (otherwise, multiplying both sides by x , we’d again have the $0 = 1$ contradiction), we also have $(1/x)^2 > 0$. Next note that $(1/x)^2 = 1/x^2$

(because both multiply x^2 to 1 so, by uniqueness of multiplicative inverse (A8), they're equal). Now apply (Ord 4) to the inequality $x^2 > 0$, multiplying both sides by $1/x^2$ (which we've just shown is positive), to deduce $1 > 0$. Then add x to both sides to finish.

Question 4: Show that for any $\delta > 0$ there exists $n \in \mathbb{N}$ such that $1/n < \delta$.

[Example 2.4.8 from the notes can be used here.]

Solution: Note that $1/\delta$ exists by (A8). We have $1/\delta > 0$ (if we had $1/\delta < 0$ then we'd deduce $1 < 0$, which contradicts the result of Question 1 since $1 = 1^2$) and so by the unboundedness of \mathbb{N} (Example 2.4.8) there exists $n \in \mathbb{N}$ such that $n > 1/\delta$. Now (Ord 4) shows that $dn > (1/\delta)d$ for any $d \in \mathbb{R}^+$. Take $d = (1/n)\delta$ - this is positive by (Ord 4) and (Ord 2) since δ and (by (Ord 2)) n are, hence (as in the first paragraph) so is $1/n$. With this value of d we get

$$\frac{1}{n} < \delta.$$

Question 5:* I said in the lecture that, from the construction of the reals \mathbb{R} from the rationals \mathbb{Q} , it follows that \mathbb{Q} is dense in \mathbb{R} (meaning that, given any two real numbers $x < y$, there is a rational number, q , between them: $x < q < y$). Show that the set $\mathbb{R} \setminus \mathbb{Q}$ of **irrationals** is **dense** in \mathbb{R} i.e. show that for all $x, y \in \mathbb{R}$ if $x < y$ then there exists $t \in \mathbb{R} \setminus \mathbb{Q}$ such that $x < t < y$.

Solution: Here are a couple of, rather different, solutions. There may well be more.

[1]: Given $x < y$ in \mathbb{R} , first choose rational x', y' with $x \leq x' < y' \leq y$ - we can do that using density of \mathbb{Q} in \mathbb{R} twice (if both x, y are irrational). So it will be enough to show that there is an irrational strictly between x' and y' . We know from Foundations of Pure Maths that $\sqrt{2}$ is irrational; so (note), for every positive integer n , $\sqrt{2}/n$ is irrational. If we choose n large enough that $\sqrt{2}/n < y' - x'$ (the distance between x' and y') then we'll have $x' < x' + \sqrt{2}/n < y'$, as required since $x' + \sqrt{2}/n$ must be irrational (if it were rational, we'd quickly deduce, subtracting the rational x' and multiplying up by n , that $\sqrt{2}$ is rational - contradiction).

[2]: We could use the ideas around countable and uncountable sets that were discussed in Foundations of Pure Maths. Recall that the interval $(0, 1)$ is uncountable. Then scale it into the interval (x, y) by applying the bijection $z \in (0, 1) \mapsto x + z/(y - x)$. Since that is a bijection, it follows that the interval (x, y) is uncountable (as, indeed, is every non-empty open interval in \mathbb{R}). But recall also that the set \mathbb{Q} is countable, so its subset $\mathbb{Q} \cap (x, y)$ is countable. Hence $(\mathbb{R} \setminus \mathbb{Q}) \cap (x, y)$ must be uncountable (if it were countable then (x, y) would be the union of two countable sets, hence countable, contradiction). In particular $(\mathbb{R} \setminus \mathbb{Q}) \cap (x, y)$ is non-empty, which is exactly what we wanted to prove.

Question 6: For each of the following sequences $(a_n)_{n \geq 1}$ and real numbers $\varepsilon > 0$, find a natural number N such that $\forall n \geq N$ we have $|a_n| < \varepsilon$.

- (a) $a_n = \frac{1}{n}$, $\varepsilon = 1/50$.
- (b) $a_n = \frac{1}{n^2}$, $\varepsilon = 1/100$.
- (c) $a_n = \frac{1}{n^2}$, $\varepsilon = 1/1000$.
- (d) $a_n = \frac{1}{\sqrt{n}}$, $\varepsilon = 1/1000$.
- (e) $a_n = \frac{\cos n}{n}$, $\varepsilon = 10^{-6}$.
- (f) $a_n = \frac{\cos n}{n^2}$, $\varepsilon = 10^{-6}$.
- (g) $a_n = \sqrt{n+2} - \sqrt{n}$, $\varepsilon = 10^{-6}$.

Solution: (a) We want $1/n < 1/50$, equivalently $n > 50$, so we can choose $N = 51$.
 (b) We need $1/n^2 < 1/100$, equivalently $100 < n^2$. So we can choose $N = 11$.
 (c) Similarly we need to have $1000 < n^2$. So we can choose, say, $N = 50$ (there's no requirement to choose the “best” value of N).
 (d) We need $1/\sqrt{n} < 1/1000$, equivalently $1000 < \sqrt{n}$. So we can choose $N = 10^6 + 1$.
 (e) We want to have $|\cos n/n| < 10^{-6}$, that is $|\cos n|/n < 10^{-6}$. Since the maximum value of $|\cos n|$ is 1, it will be enough to choose $N = 10^6 + 1$; let's just check that.

(Notice that, so far, we've kind of worked backwards to find the right value of N , and that's been enough since it's been obvious that the chosen value of N works. More commonly, you work backwards, or maybe even semi-guess, a value of N that will work, but then you do have to check that it really does work. So let's do that now, in this example.)

Suppose $n \geq 10^6 + 1$, so

$$\frac{1}{n} \leq \frac{1}{10^6 + 1} < \frac{1}{10^6},$$

then

$$\left| \frac{\cos n}{n} \right| \leq \frac{1}{n} < 10^{-6} = \varepsilon,$$

as required.

(f) We want $|\cos n/n^2| < 10^{-6}$ and, as in part (d), it will be enough to have $1/n^2 < 10^{-6}$, that is $n > 10^3$, so take, say, $N = 10^4$ ($N = 10^3 + 1$ is the minimum choice). We check: if $n \geq 10^4$, then $n^2 > 10^6$, so $1/n^2 < 10^{-6}$, hence

$$\left| \frac{\cos n}{n^2} \right| < \frac{1}{n^2} < 10^{-6},$$

as required.

(g) We need to get a “nice” estimate of the difference $\sqrt{n+2} - \sqrt{n}$ between these square roots. Multiply by

$$\frac{\sqrt{n+2} + \sqrt{n}}{\sqrt{n+2} + \sqrt{n}}$$

and simplify to get

$$\sqrt{n+2} - \sqrt{n} = \frac{(\sqrt{n+2} - \sqrt{n})(\sqrt{n+2} + \sqrt{n})}{\sqrt{n+2} + \sqrt{n}} = \frac{2}{\sqrt{n+2} + \sqrt{n}}.$$

Now, since $\sqrt{n+2} > \sqrt{n}$, we have $\sqrt{n} + \sqrt{n+2} > \sqrt{n} + \sqrt{n} > 0$, so

$$\frac{1}{\sqrt{n} + \sqrt{n+2}} < \frac{1}{\sqrt{n} + \sqrt{n}},$$

and thus

$$\frac{2}{\sqrt{n+2} + \sqrt{n}} < \frac{2}{2\sqrt{n}} = \frac{1}{\sqrt{n}}.$$

Therefore we should choose N such that $1/\sqrt{N} \leq 10^{-6}$, equivalently, $N \geq 10^{12}$. So take $N = 10^{12}$ (we don't need to check directly because the estimates we made had the form “it's enough to ...” and the final part of the estimation for N was “iff”).

Question 7: For each of the following sequences $(a_n)_{n \geq 1}$ and real numbers $\varepsilon > 0$, find a natural number N such that $\forall n \geq N$ we have $|a_n - 2| < \varepsilon$.

- (a) $a_n = 2 - \frac{1}{2^n}$, $\varepsilon = 1/1000$.
- (b) $a_n = 2 + \frac{\sin n}{n}$, $\varepsilon = 1/1000$.

Solution: (a) We want $|2 - 1/2^n - 2| < \varepsilon$, that is $1/2^n < \varepsilon$, equivalently $2^n > 1/\varepsilon$ so, putting $\varepsilon = 1/1000$, we need $2^n > 1000$, so take $N = 10$, say. (For a general ε , we'd take $N = \log_2 1/\varepsilon$.)

(b) We want $|2 - \sin(n)/n - 2| < \varepsilon$, that is $|\sin(n)/n| < \varepsilon$. Since $|\sin(n)| \leq 1$, so $|\sin(n)/n| \leq 1/n$, it will be sufficient to have $1/n < \varepsilon$, equivalently $n > 1/\varepsilon$. In the case $\varepsilon = 1/1000$, this becomes $n > 1000$, so take $N = 1001$, say. (For a general ε , we could take $N = [1/\varepsilon] + 1$.)

Solution to Extra Question for Week 2 Prove, from the axioms, that $(-1).x = -x$.

Solution: By (A4) we have $x + (-x) = 0$; in particular $1 + (-1) = 0$. So $0.x = (1 + (-1))x = 1.x + (-1).x$ (by (A6) and (A9)) = $x + (-1).x$ (by (A7)). And $0.x = (0+0).x$ (by (A3)) = $0.x + 0.x$ ((A6),(A9)) so, adding $-(0.x)$ to each side, we get, using (A4) and (A1), $0 = 0.x$.

Now we have both $x + (-x) = 0$ and $0 = x + (-1).x$ so, by the uniqueness part of (A4), we deduce $-x = (-1).x$.

There will be other proofs, maybe some shorter.